Накопители электрической энергии большой емкости. Какой накопитель энергии самый энергоемкий

Существует вопрос: «Какой способ хранения энергии предпочтителен в той или иной ситуации?» . К примеру, какой способ аккумулирования энергии выбрать для частного дома или дачи, оборудованных солнечной или ветровой установкой? Очевидно, что крупную гидроаккумулирующую станцию в этом случае строить никто не будет, однако установить большую емкость, подняв ее на высоту 10 метров, возможно. Но будет ли такая установка достаточна для поддержания постоянного электроснабжения при отсутствии солнца?

Чтобы ответить на возникающие вопросы, необходимо выработать какие-то критерии оценки аккумуляторов, позволяющие получить объективные оценки. А для этого нужно рассмотреть различные параметры накопителей, позволяющие получить числовые оценки.

Емкость или накопленный заряд?

Когда говорят или пишут об автомобильных аккумуляторах, часто упоминают величину, которую называют емкостью аккумулятора и выражают в ампер-часах (для небольших аккумуляторов - в миллиампер-часах). Но, строго говоря, ампер-час не является единицей емкости. Емкость в теории электричества измеряют в фарадах. А ампер-час - это единица измерения заряда! То есть характеристикой аккумулятора нужно считать (и так это и называть) накопленный заряд.
В физике заряд измеряют в кулонах. Кулон - это величина заряда, прошедшего через проводник при силе тока 1 ампер за одну секунду. Поскольку 1 Кл/c равен 1 А, то, переведя часы в секунды, получаем, что один ампер-час будет равен 3600 Кл.
Следует обратить внимание, что даже из определения кулона видно, что заряд характеризует некий процесс, а именно процесс прохождения тока по проводнику. То же самое следует даже из названия другой величины: один ампер-час - это когда ток силой в один ампер протекает по проводнику в течение часа.

На первый взгляд может показаться, что тут какая-то нестыковка. Ведь если мы говорим о сохранении энергии, то накопленная в любом аккумуляторе энергия должна измеряться в джоулях, поскольку именно джоуль в физике служит единицей измерения энергии. Но давайте вспомним, что ток в проводнике возникает только тогда, когда имеется разность потенциалов на концах проводника, то есть к проводнику приложено напряжение. Если напряжение на клеммах аккумулятора равно 1 вольту и по проводнику протекает заряд в один ампер-час, мы и получаем, что аккумулятор отдал 1 В · 1 А·ч = 1 Вт·ч энергии.

Таким образом, применительно к аккумуляторам правильнее говорить о накопленной энергии (запасенной энергии) или о накопленном (запасенном) заряде. Тем не менее, поскольку термин «емкость аккумулятора» широко распространен и как-то более привычен, будем использовать и его, но с некоторым уточнением, а именно, будем говорить про энергетическую емкость.

Ёмкость энергетическая - энергия, отдаваемая полностью заряженным аккумулятором при разряде до наименьшего допустимого значения.
Используя это понятие, попытаемся приблизительно посчитать и сравнить энергетическую емкость различных типов накопителей энергии.

Энергетическая емкость химических аккумуляторов

Полностью заряженный электрический аккумулятор с заявленной ёмкостью (зарядом) в 1 А·ч теоретически способен обеспечить силу тока 1 ампер в течение одного часа (или, например, 10 А в течение 0,1 часа, или 0,1 А в течение 10 часов). Но слишком большой ток разряда аккумулятора приводит к менее эффективной отдаче электроэнергии, что нелинейно уменьшает время его работы с таким током и может приводить к перегреву. На практике ёмкость аккумуляторов приводят, исходя из 20-часового цикла разряда до конечного напряжения.

Для автомобильных аккумуляторов оно составляет 10,8 В. Например, надпись на маркировке аккумулятора «55 А·ч» означает, что он способен выдавать ток 2,75 ампер на протяжении 20 часов, и при этом напряжение на клеммах не опустится ниже 10,8 В.

Производители аккумуляторов часто указывают в технических характеристиках своих изделий запасаемую энергию в Вт·ч (Wh), а не запасаемый заряд в мА·ч (mAh), что, вообще говоря, не правильно. Вычислить запасаемую энергию по запасаемому заряду в общем случае непросто: требуется интегрирование мгновенной мощности, выдаваемой аккумулятором за всё время его разряда. Если большая точность не нужна, можно вместо интегрирования воспользоваться средними значениями напряжения и потребляемого тока и воспользоваться формулой:

1 Вт·ч = 1 В · 1 А·ч.

То есть запасаемая энергия (в Вт·ч) приблизительно равна произведению запасаемого заряда (в А·ч) на среднее напряжение (в Вольтах): E = q · U . Например, если указано, что емкость (в обычном смысле) 12-вольтового аккумулятора равна 60 А·ч, то запасаемая энергия, то есть его энергетическая ёмкость, составит 720 Вт · часов.

Энергетическая емкость накопителей гравитационной энергии

В любом учебнике физики вы можете прочитать, что работа A, совершаемая некоторой силой F при подъеме тела массы m на высоту h вычисляется по формуле A = m · g · h, где g - ускорение свободного падения. Эта формула имеет место в том случае, когда движение тела происходит медленно и силами трения можно пренебречь. Работа против силы тяжести не зависит от того, как мы поднимаем тело: по вертикали (как гирю в часах), по наклонной плоскости (как при втаскивании санок в гору) или еще каким-либо способом.

Во всех случаях работа A = m · g · h. При опускании тела на первоначальный уровень сила тяжести произведет такую же работу, какая была затрачена силой F на подъем тела. Значит, поднимая тело, мы запасли работу, равную m · g · h, т. е. поднятое тело обладает энергией, равной произведению силы тяжести, действующей на это тело, и высоты, на которую оно поднято. Эта энергия не зависит от того, по какому пути происходил подъем, а определяется лишь положением тела (высотой на которую оно поднято или разностью высот между первоначальным и окончательным положением тела) и называется потенциальной энергией.

Оценим по этой формуле энергетическую емкость массы воды, закачанной в цистерну емкостью 1000 литров, поднятую на 10 метров над уровнем земли (или уровнем турбины гидрогенератора). Будем считать, что цистерна имеет форму куба с длиной ребра 1 м. Тогда, согласно формуле в учебнике Ландсберга, A = 1000 кг · (9,8 м/с2) · 10,5 м = 102900 кг · м2/с2. Но 1 кг · м2/с2 равен 1 джоулю, а переводя в ватт-часы, получим всего 28,583 ватт-часов. То есть, чтобы получить энергетическую емкость, равную емкости обычного электроаккумулятора 720 ватт-часов, нужно увеличить объем воды в цистерне в 25,2 раза.

Цистерна должна будет иметь длину ребра примерно 3 метра. При этом ее энергетическая емкость будет равна 845 ватт-часам. Это больше емкости одного аккумулятора, но зато и объем установки существенно больше, чем размер обычного свинцово-цинкового автомобильного аккумулятора. Это сравнение подсказывает, что имеет смысл рассматривать не запасенную энергию в некоторой системе энергию саму по себе, а по отношению к массе или объему рассматриваемой системы.

Удельная энергетическая емкость

Итак мы пришли к заключению, что энергетическую емкость целесообразно соотносить с массой или объемом накопителя, или собственно носителя, например, воды, залитой в цистерну. Можно рассмотреть два показателя этого рода.

Массовой удельной энергоемкостью будем называть энергетическую емкость накопителя, отнесенную к массе этого накопителя.

Объемной удельной энергоемкостью будем называть энергетическую емкость накопителя, отнесенную к объему этого накопителя.

Пример. Свинцово-кислотный аккумулятор Panasonic LC-X1265P, рассчитанный на напряжение 12 вольт, имеет заряд 65 ампер-часов, вес - 20 кг. и размеры (ДхШхВ) 350 · 166 · 175 мм. Срок его службы при t = 20 C - 10 лет. Таким образом его массовая удельная энергоёмкость составит 65 · 12 / 20 = 39 ватт-часов на килограмм, а объёмная удельная энергоёмкость - 65 · 12 / (3,5 · 1,66 · 1,75) = 76,7 ватт-часов на кубический дециметр или 0,0767 кВт-часа на кубический метр.

Для рассмотренного в предыдущем разделе накопителя гравитационной энергии на основе цистерны с водой объемом 1000 литров удельная массовая энергоёмкость составит всего 28,583 ватт-часов/1000 кг = 0, 0286 Вт-ч/кг., что в 1363 раза меньше, чем массовая энергоемкость свинцово-цинкового аккумулятора. И хотя срок службы гравитационного накопителя может оказаться существенно больше, все же с практической точки зрения цистерна кажется менее привлекательной, чем аккумуляторная батарея.Рассмотрим еще несколько примеров накопителей энергии и оценим их удельные энергоемкости.

Энергоёмкость теплоаккумулятора

Теплоёмкость - количество теплоты, поглощаемой телом при нагревании его на 1 °С. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая удельная теплоёмкость, также называемая просто удельной теплоёмкостью - это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях, деленных на килограмм на кельвин (Дж·кг−1·К−1).

Объёмная теплоёмкость - это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м−3·К−1).

Молярная теплоёмкость - это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

Моль - единица измерения количества вещества в Международной системе единиц. Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.
На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.

Переход вещества из одного агрегатного состояния в другое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения - температура плавления (переход твёрдого тела в жидкость), температура кипения (переход жидкости в газ) и, соответственно, температуры обратных превращений: замерзания и конденсации.

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях - 4200 Дж/(кг·К); льда - 2100 Дж/(кг·К).

Исходя из приведенных данных можно попытаться оценить теплоемкость водяного теплоаккумулятора (абстрактного). Предположим, что масса воды в нем равна 1000 кг (литров). Нагреваем ее до 80 °C и пусть она отдает тепло, пока не остынет до 30 °C. Если не заморачиваться тем, что теплоемкость различна при разной температуре, можно считать, что теплоаккумулятор отдаст 4200 * 1000 * 50 Дж тепла. То есть энергетическая емкость такого теплоаккумулятора составляет 210 мегаджоулей или 58,333 киловатт-часов энергии.

Если сравнить эту величину с энергетическим зарядом обычного автомобильного аккумулятора (720 ватт-часов), то видим, что для энергетическая емкость рассматриваемого теплоаккумулятора равна энергетической емкости примерно 810 электрических аккумуляторов.

Удельная массовая энергоемкость такого теплоаккумулятора (даже без учета массы сосуда, в котором собственно будет храниться нагретая вода, и массы теплоизоляции) составит 58,3 кВт-ч/1000 кг = 58,3 Вт-ч/кг. Это уже получается поболее, чем массовая энергоемкость свинцово-цинкового аккумулятора, равная, как было подсчитано выше, 39 Вт-ч/кг.

По приблизительным подсчетам теплоаккумулятор сравним с обычным автомобильным аккумулятором и по объёмной удельной энергоёмкости, поскольку килограмм воды - это дециметр объема, следовательно его объемная удельная энергоемкость тоже равна 76,7 Вт-ч/кг., что в точности совпадает с объемной удельной теплоемкостью свинцово-кислотного аккумулятора. Правда, в расчете для теплоаккумулятора мы учитывали только объем воды, хотя нужно было бы учесть еще объем бака и теплоизоляции. Но в любом случае проигрыш будет уже не так велик, как для граыитационного накопителя.

Другие виды накопителей энергии

В статье «Обзор накопителей (аккумуляторов) энергии» приведены расчеты удельных энергоемкостей еще некоторых накопителей энергии. Позаимствуем оттуда некоторые примеры

Конденсаторный накопитель

При емкости конденсатора 1 Ф и напряжении 250 В запасенная энергия составит: E = CU2 /2 = 1 ∙ 2502 /2 = 31.25 кДж ~ 8.69 Вт · час. Если использовать электролитические конденсаторы, то их масса может составить 120 кг. Удельная энергия накопителя при этом 0.26 кДж/кг или 0,072 Вт/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 9 Вт. Срок службы электролитических конденсаторов может достигать 20 лет. Ионисторы по плотности запасаемой энергии приближаются к химическим аккумуляторным батареям. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени.

Гравитационные накопители копрового типа

Вначале поднимаем тело массой 2000 кг на высоту 5 м. Затем тело опускается под действием силы тяжести, вращая электрогенератор. E = mgh ~ 2000 ∙ 10 ∙ 5 = 100 кДж ~ 27.8 Вт · час. Удельная энергетическая ёмкость 0.0138 Вт · час/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 28 Вт. Срок службы накопителя может составлять 20 и более лет.

Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени.

Маховик

Энергия, запасаемая в маховике, может быть найдена по формуле E = 0.5 J w2 , где J - момент инерции вращающегося тела. Для цилиндра радиуса R и высотой H:

J = 0.5 p r R4 H

Где r - плотность материала, из которого изготовлен цилиндр.

Предельная линейная скорость на периферии маховика Vmax (составляет примерно 200 м/с для стали).

Vmax = wmax R или wmax = Vmax /R

Тогда Emax = 0.5 J w2max = 0.25 p r R2 H V2max = 0.25 M V2max

Удельная энергия составит: Emax /M = 0.25 V2max

Для стального цилиндрического маховика максимальная удельная энергоемкость составляет приблизительно 10 кДж/кг. Для маховика массой 100 кг (R = 0.2 м, H = 0.1 м) максимальная накопленная энергия может составлять 0.25 ∙ 3.14 ∙ 8000 ∙ 0.22 ∙ 0.1 ∙ 2002 ~ 1 МДж ~ 0.278 кВт · час. При работе накопитель может в течение часа обеспечивать нагрузку не более 280 Вт. Срок службы маховика может составлять 20 и более лет. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени, характеристики могут быть существенно улучшены.

Супермаховик

Супермахови́к в отличие от обычных маховиков способен за счёт конструктивных особенностей теоретически хранить до 500 Вт·ч на килограмм веса. Однако разработки супермаховиков почему-то остановились.

Пневматический накопитель

В стальной резервуар емкостью 1 м3 закачивается воздух под давлением 50 атмосфер. Чтобы выдержать такое давление, стенки резервуара должны иметь толщину примерно 5 мм. Сжатый воздух используется для выполнения работы. При изотермическом процессе работа A, совершаемая идеальным газом при расширении в атмосферу, определяется формулой:

A = (M / m) ∙ R ∙ T ∙ ln (V2 / V1)

Где M - масса газа, m - молярная масса газа, R - универсальная газовая постоянная, T - абсолютная температура, V1 - начальный объем газа, V2 - конечный объем газа. С учетом уравнения состояния для идеального газа (P1 ∙ V1 = P2 ∙ V2) для данной реализации накопителя V2 / V1 = 50, R = 8.31 Дж/(моль · град), T = 293 0K, M / m ~ 50: 0.0224 ~ 2232, работа газа при расширении 2232 ∙ 8.31 ∙ 293 ∙ ln 50 ~ 20 МДж ~ 5.56 кВт · час за цикл. Масса накопителя примерно равна 250 кг. Удельная энергия составит 80 кДж/кг. При работе пневматический накопитель может в течение часа обеспечивать нагрузку не более 5.5 кВт. Срок службы пневматического накопителя может составлять 20 и более лет.

Достоинства: накопительный резервуар может быть расположен под землей, в качестве резервуара могут использоваться стандартные газовые баллоны в требуемом количестве с соответствующим оборудованием, при использовании ветродвигателя последний может непосредственно приводить в действие насос компрессора, имеется достаточно большое количество устройств, напрямую использующих энергию сжатого воздуха.

Сравнительная таблица некоторых накопителей энергии

Все полученные выше значения параметров накопителей энергии сведем в обобщающую таблицу. Но вначале заметим, что удельные энергоемкости позволяют сравнивать накопители с обычным топливом.

Основной характеристикой топлива является его теплота сгорания, т.е. количество теплоты, выделяющееся при полном его сгорании. Различают теплоту сгорания удельную (МДж/кг) и объемную (МДж/м3). Переводя МДж в кBт-часы получаем:

Топливо Энергетическая ёмкость (кВт-ч /кг) Дрова 2,33-4,32 Горючий сланец 2,33 – 5,82 Торф 2,33 – 4,66 Бурый уголь 2,92 -5,82 Каменный уголь ок. 8,15 Антрацит 9,08 – 9,32 Нефть 11,63 Бензин 12,8 кВт-ч/кг, 9,08 кВт-ч/литр

Как видим, удельные энергоёмкости топлива значительно превосходят энергоемкость накопителей энергии. Поскольку в качестве резервного источника энергии часто используются дизельные генераторы, включим в итоговую таблицу энергоемкость дизельного топлива, которая равна 42624 кДж/кг или 11,84 кВт-часа/кг. И добавим для сравнения еще природный газ и водород, поскольку последний тоже может служить основой для создания накопителей энергии.

Удельная массовая энергоёмкость баллонного газа (пропан-бутан) составляет 36 мДж/кг. или 10 КВт-ч/кг., а у водорода - 33,58 КВт-ч/кг.

В результате получим следующую таблицу с параметрами рассмотренных накопителей энергии (последние две строки в этой таблице добавлены для сравнения с традиционными энерго-носителями):

Накопитель энергии Характеристики возможной
реализации накопителя Запасенная
энергия, КВт*ч Удельная энергетическая ёмкость,
Вт · час/кг Максимальное время работы
на нагрузку 100 Вт, минут Объемная удельная энергоемкость,
Вт · час/дм3 Срок службы,
лет Копровый Масса копра 2 т, высота
подъема 5 м 0,0278 0.0139 16,7 2,78/объем копра в дм более 20 Гидравлический гравитационный Масса воды 1000 кг, высота перекачки 10 м 0,0286 0,0286 16,7 0,0286 более 20 Конденсаторный Батарея емкостью 1 Ф,
напряжением 250 В, масса 120 кг 0,00868 0.072 5.2 0,0868 до 20 Маховик Стальной маховик массой 100 кг, диаметр 0.4 м, толщина 0.1 м 0,278 2,78 166,8 69,5 более 20 Свинцово-кислотный аккумулятор Емкость 190 А·час, выходное напряжение 12 В, масса 70 кг 1,083 15,47 650 60-75 3 … 5 Пневматический Стальной резервуар объемом 1 м3массой 250 кг со сжатым воздухом под давлением 50 атмосфер 0,556 22,2 3330 0,556 более 20 Теплоаккумулятор Объем воды 1000 л., нагретой до 80 °C, 58,33 58,33 34998 58,33 до 20 Баллон с водородом Объем 50 л., плотность 0,09 кг/м³, степень сжатия 10:1 (масса 0,045 кг) 1,5 33580 906,66 671600 более 20 Баллон с пропан-бутаном Объем газа 50 л, плотность 0,717 кг/м³, степень сжатия 10:1 (масса 0,36 кг) 3,6 10000 2160 200000 более 20 Канистра с дизельным топливом Объем 50 л. (=40кг) 473,6 11840 284160 236800 более 20

Приведенные в этой таблице цифры очень приблизительны, в расчетах не учтено множество факторов, например, коэффициэнт полезного действия того генератора, который использует сохраненную энергию, объемы и веса необходимого оборудования и так далее. Тем не менее, эти цифры позволяют, на мой взгляд, дать первоначальную оценку потенциальной энергоемкости различных видов накопителей энергии.

И, как следует из приведенной таблицы, наиболее эффективным видом накопителя представляется баллон с водородом. Если для получения водорода используется «дармовая» (избыточная) энергия из возобновляемых источников, то именно водородный накопитель может оказаться самым перспективным.

Водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания, который будет вращать электрогенератор, либо в водородных топливных ячейках, которые непосредственно производят электроэнергию. Вопрос о том, какой способ выгоднее, требует уже отдельного рассмотрения. Ну, и вопросы безопасности при производстве и использовании водорода могут внести коррективы при рассмотрении целесообразности применения того или иного вида накопителей энергии. опубликовано

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! ©

Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

Концепции рационального расхода энергии становятся все более актуальными на общем фоне технологического развития. Связано это с тем, что энергоэффективность как таковая перешла из разряда дополнительных и зачастую эксклюзивных свойств в ранг одной из ключевых потребительских характеристик продукта. Достаточно вспомнить простейшие аккумуляторы, которые используются в цифровой технике, электрооборудовании, оснащении силового инструмента и т. д. Существуют и более масштабные сферы применения аккумулирующих энергию систем, для которых особенно важна экономность энергопотребления. И этот запрос находит отклик у специализированных производителей, которые выпускают накопители энергии с улучшенными эксплуатационными качествами.

Общие сведения об энергетических накопителях

В природе немало постоянных и неисчерпаемых источников энергии, которая и применяется для обслуживания различных потребностей человечества. Но для конечного ее использования она должна пройти много этапов переработки и аккумуляции. Эту функцию выполняют энергостанции и подстанции. В список их непосредственных задач входит генерация энергии с приемлемыми для использования характеристиками, а также ее преобразование и распределение. Основная инфраструктура энергообеспечения жилых домов, объектов промышленности, инженерного оборудования и других ответственных потребителей реализуется через стационарные электросети. В них осуществляется постоянное снабжение, но сегодня стабильно растет спрос на автономное оборудование, устройства и электроприборы. Специально для таких потребителей используется емкостной накопитель энергии, который является независимым но условно - с определенными интервалами он должен и сам заряжаться от тех же стационарных сетей. Простейшим примером такого накопителя является телефонная батарея. К примеру, элемент Li-Ion может иметь емкость порядка 2000-3000 мАч. Ее будет достаточно на несколько часов или дней автономной работы обслуживаемого устройства в зависимости от его модели. Но после исчерпания этого объема аккумулятор должен подключаться к розетке на 220 В для восстановления.

Механические накопители

Данная категория накопителей имеет самую долгую историю существования. Для иллюстрации таких устройств можно привести в пример гравитационные системы. Сегодня уже почти не используются, но прежде были широко распространены подъемно-поворотные ворота с противовесами. В них используется энергия груза, которая аккумулируется и в нужный момент возвращается в той или иной форме - это зависит от конструкционного исполнения накопителя. Помимо обычных грузов, в качестве активного аккумулирующего элемента выступает и жидкость. К достоинствам таких систем можно отнести конструкционную гибкость. Инженеры могли использовать разветвленные сети трубопроводов, проходя через которые вода отдавала энергию сопряженным резервуарам. В наше время подобные накопители энергии представлены в виде гидроаккумулирующих станций. Правда, жидкостные накапливающие устройства характеризуются небольшим временем хранения, так как вода испаряется и требует регулярного обновления.

Кинетические накопители

Эту группу в основном представляют колебательные механизмы, в которых процесс аккумуляции реализуется через возвратно-поступательные, вращательные или линейные движения того же груза. Особенностью таких конструкций является то, что при необходимости возврат энергии будет осуществляться так же не беспрерывно, а порциями - тактами. Классическим примером кинетического накопителя являются механические часы. В данном случае «заряд» производится посредством завода механизма, после чего следует постепенная отдача энергии от пружинного маятника. Более современную интерпретацию кинетических механизмов представляет гироскопический аккумулятор. Накопитель энергии в этом случае базируется на вращающемся маховике с ударной функцией. Такие системы находят применение в гидравлической и пневматической технике.

Тепловые накопители

С технологической точки зрения это простейший пример аккумуляции энергии, с процессами которого человек встречается повсюду. Нагретый под прямыми лучами солнца металлический забор уже становится аккумулятором тепла, так как сохраняет его в своей структуре. Также и другие материалы могут выступать накопителями тепла. Эффективность их работы в этом качестве будет зависеть от удельной и объемной теплоемкости. К примеру, теплоемкость воды составляет 4,2 кДж, а у стали она небольшая - лишь 0,46 кДж. И все же когда речь идет о целенаправленной аккумуляции, то чаще используют металлические накопители тепловой энергии или масляные. Это решение оправдано стремлением к оптимизации конструкции. Современные конвекторы и радиаторы преимущественно изготавливаются из стали и алюминия. Опять же, некоторые модели наполняются более выгодными в показателях удержания тепловой энергии материалами.

Электрические накопители энергии

Самый массовый вид энергии - электричество. Поэтому данная категория развивается наиболее активно, предлагая все новые и более совершенные решения. На данный момент самым распространенным аккумулятором электроэнергии является радиотехнический конденсатор. Он характеризуется высокой скоростью отдачи и накопления энергии, не ограничивая рабочие процессы окружающими условиями. Например, большинство моделей могут использоваться в условиях повышенных или крайне низких температур. И опять же, в целях оптимизации электрические накопители энергии наполняются специальными электролитическими элементами с высокой удельной емкостью.

Химические накопители

В процессе работы таких накопителей происходит химическая реакция. Источником энергии в данном случае будет сама организация условий для этой реакции и обеспечение активности задействованных компонентов. Причем на выходе может образовываться энергия разных типов. Например, из воды может выделяться водород в ходе прямого электролиза. Чаще всего при таких способах накопления выделяется именно топливо. Оно может быть преобразовано внутри комплекса обеспечения химической реакции или же передаваться потребителю в первоначальном виде. Поэтому накопители энергии могут выступать и преобразователями, хотя подобное расширение функций технически усложняет систему.

Электрохимические накопители

Этот вид накопителей, как видно из названия, является комбинированным или гибридным. Поскольку химические реакции отличаются высокой степенью эффективности и дешевизной, их логично объединили с задачей выработки наиболее востребованного типа энергии - электричеством. Активным элементом в таких устройствах выступает электролит. В частности, накопитель энергии для телефона обычно изготавливается на основе литий-ионных или литий-полимерных элементов. Это же касается аккумуляторных блоков для электроинструмента. По характеристикам это вполне выгодные элементы питания, отличающиеся достойной производительностью, высокой емкостью и небольшими размерами. Но электрохимические батареи имеют ограниченное число циклов заряда-разряда, в чем и заключается их главный минус.

Современные решения

Передовые компании, занимающиеся разработкой высоких технологий, продвигают и направление емкостных аккумуляторов. Так, например, инженеры Tesla создали блок Powerwall 2 массой 122 кг, основанный на тех же литий-ионных батареях. Данная установка является модульной и способна хранить порядка 13,5 кВт*ч. Аналогичные разработки предлагает LG. Например, система Chem RESU вмещает порядка 10 кВт*ч, но в остальных эксплуатационных качествах не уступает блоку Tesla. Данный аккумулятор является универсальным накопителем энергии, который можно использовать как в быту, так и в промышленности на производствах. Главное, чтобы мощности соответствовали требованиям к потребляющим системам.

Заключение

В сегменте энергетических накопителей также выделяются разные направления технологического развития. Объединяются они лишь одним - соответствием требованиям конечных потребителей. К примеру, накопители электрической энергии для малогабаритной аппаратуры и оборудования должны отвечать требованиям надежности и безотказности. Широкий рынок цифровой техники скорее ориентирован на компактные размеры накопителей и повышение их емкости. Очевидно, что совместить в одном устройстве все перечисленные качества непросто, поэтому разработчики все же стремятся изначально ориентировать свою продукцию на конкретные области применения.

Природа подарила человеку разнообразные источники энергии: солнце, ветер, реки и другие. Недостатком этих генераторов бесплатной энергии является отсутствие стабильности. Поэтому в периоды избытка энергии ее запасают в накопителях и расходуют в периоды временного спада. Накопители энергии характеризуют следующие параметры:

  • объем запасаемой энергии;
  • скорость ее накопления и отдачи;
  • удельная плотность;
  • сроки хранения энергии;
  • надежность;
  • стоимость изготовления и обслуживания и другие.

Методов систематизации накопителей множество. Одним из самых удобных является классификация по типу энергии, используемой в накопителе, и по способу ее накопления и отдачи. Накопители энергии подразделяются на следующие основные виды:

  • механические;
  • тепловые;
  • электрические;
  • химические.

Накопление потенциальной энергии

Суть этих устройств незамысловата. При подъеме груза происходит накопление потенциальной энергии, при опускании она совершает полезную работу. Особенности конструкции зависят от вида груза. Это может быть твердое тело, жидкость или сыпучее вещество. Как правило, конструкции устройств этого типа предельно просты, отсюда высокая надежность и длительный срок службы. Время хранения запасенной энергии зависит от долговечности материалов и может достигать тысячелетий. К сожалению, такие устройства обладают низкой удельной энергоемкостью.

Механические накопители кинетической энергии

В этих хранится в движении какого-либо тела. Обычно это колебательное или поступательное движение.

В колебательных системах сосредоточена в возвратно-поступательном движении тела. Энергия подается и расходуется порциями, в такт с движением тела. Механизм достаточно сложный и капризный в настройке. Широко используется в механических часах. Количество запасаемой энергии обычно невелико и годится только для работы самого устройства.

Накопители, использующие энергию гироскопа

Запас кинетической энергии сосредоточен во вращающемся маховике. Удельная энергия маховика значительно превосходит энергию аналогичного статического груза. Имеется возможность в короткий промежуток времени производить прием или отдачу значительной мощности. Время хранения энергии невелико, и для большинства конструкций ограничено несколькими часами. Современные технологии позволяют довести время хранения энергии до нескольких месяцев. Маховики очень чувствительны к сотрясениям. Энергия устройства находится в прямой зависимости от скорости его вращения. Поэтому в процессе накопления и отдачи энергии происходит изменение скорости вращения маховика. А для нагрузки, как правило, требуется постоянная, невысокая скорость вращения.

Более перспективными устройствами являются супермаховики. Их изготавливают из стальной ленты, синтетического волокна или проволоки. Конструкция может быть плотной или иметь пустое пространство. При наличии свободного места витки ленты перемещаются к периферии вращения, момент инерции маховика изменяется, часть энергии запасается в подвергшейся деформации пружине. В таких устройствах скорость вращения более стабильна, чем в цельнотелых конструкциях, а их энергоемкость гораздо выше. Кроме того, они более безопасны.

Современные супермаховики изготовляют из кевларового волокна. Они вращаются в вакуумной камере на магнитном подвесе. Способны сохранять энергию несколько месяцев.

Механические накопители, использующие силы упругости

Этот тип устройств способен запасать огромную удельную энергию. Из механических накопителей он обладает наибольшей энергоемкостью для устройств с габаритами в несколько сантиметров. Большие маховики с очень высокой скоростью вращения имеют гораздо большую энергоемкость, но они очень уязвимы от внешних факторов и имеют меньшее время хранения энергии.

Механические накопители, использующие энергию пружины

Способны обеспечить самую большую механическую мощность из всех классов накопителей энергии. Она ограничена лишь пределом прочности пружины. Энергия в сжатой пружине может храниться несколько десятилетий. Однако из-за постоянной деформации в металле накапливается усталость, и емкость пружины снижается. В то же время высококачественные стальные пружины при соблюдении условий эксплуатации могут работать сотни лет без ощутимой потери емкости.

Функции пружины могут выполнять любые упругие элементы. например, в десятки раз превосходят стальные изделия по запасаемой энергии на единицу массы. Но срок службы резины из-за химического старения составляет всего несколько лет.

Механические накопители, использующие энергию сжатых газов

В этом типе устройств накопление энергии происходит за счет сжатия газа. При наличии избытка энергии газ при помощи компрессора закачивается под давлением в баллон. По мере необходимости сжатый газ используется для вращения турбины или электрогенератора. При небольших мощностях вместо турбины целесообразно использовать поршневой мотор. Газ в емкости под давлением в сотни атмосфер обладает высокой удельной плотностью энергии в течение нескольких лет, а при наличии качественной арматуры - и десятки лет.

Накопление тепловой энергии

Большая часть территории нашей страны расположена в северных районах, поэтому значительная часть энергии вынужденно расходуется для обогрева. В связи с этим приходится регулярно решать проблему сохранения тепла в накопителе и извлечении его оттуда при необходимости.

В большинстве случаев не удается достичь высокой плотности запасаемой тепловой энергии и сколько-нибудь значительных сроков ее сохранения. Существующие эффективные устройства в силу ряда своих особенностей и высокой цены не подходят для широкого применения.

Накопление за счет теплоемкости

Это один из самых древних способов. В его основе лежит принцип накопления тепловой энергии при нагревании вещества и отдачи тепла при его охлаждении. Конструкция таких накопителей чрезвычайно проста. Им может быть кусок любого твердого вещества либо закрытая емкость с жидким теплоносителем. Накопители тепловой энергии имеют очень большой срок службы, практически неограниченное количество циклов накопления и отдачи энергии. Но время хранения не превышает нескольких суток.

Аккумулирование электрической энергии

Электрическая энергия - это самая удобная ее форма в современном мире. Именно поэтому электрические накопители получили широкое распространение и наибольшее развитие. К сожалению, удельная емкость дешевых аппаратов невелика, а приборы с большой удельной емкостью слишком дороги и недолговечны. Накопители электрической энергии - это конденсаторы, ионисторы, аккумуляторы.

Конденсаторы

Это самый массовый вид накопителей энергии. Конденсаторы способны работать при температуре от -50 до +150 градусов. Количество циклов накопления-отдачи энергии - десятки миллиардов в секунду. Соединяя несколько конденсаторов параллельно, можно легко получить емкость необходимой величины. Кроме того, существуют переменные конденсаторы.Изменение емкости таких конденсаторов может производиться механическим или электрическим способом либо воздействием температуры. Чаще всего переменные конденсаторы можно встретить в колебательных контурах.

Конденсаторы делятся на два класса - полярные и неполярные. Срок службы полярных (электролитических) меньше, чем неполярных, они больше зависят от внешних условий, но в то же время обладают большей удельной емкостью.

Как накопители энергии конденсаторы - не очень удачные приборы. Они имеют малую емкость и незначительную удельную плотность запасаемой энергии, а время ее хранения исчисляется секундами, минутами, редко часами. Конденсаторы нашли применение в основном в электронике и силовой электротехнике.

Расчет конденсатора, как правило, не вызывает затруднений. Вся необходимая информация по разным типам конденсаторов представлена в технических справочниках.

Ионисторы

Эти приборы занимают промежуточное место между полярными конденсаторами и аккумуляторами. Иногда их называют «суперконденсаторами». Соответственно, они имеют огромное количество этапов заряда-разряда, емкость больше, чем у конденсаторов, но немного меньше, чем у небольших аккумуляторов. Время хранения энергии - до нескольких недель. Ионисторы очень чувствительны к температуре.

Силовые аккумуляторы

Электрохимические аккумуляторы используются, если требуется запасать достаточно много энергии. Лучше всего для этой цели подходят свинцово-кислотные приборы. Их изобрели около 150 лет назад. И с тех пор в устройство аккумулятора не внесли ничего принципиально нового. Появилось много специализированных моделей, значительно возросло качество комплектующих изделий, повысилась надежность аккумуляторной батареи. Примечательно, что устройство аккумулятора, созданного разными производителями, для разных целей отличается лишь в незначительных деталях.

Электрохимические аккумуляторы подразделяются на тяговые и стартовые. Тяговые используются в электротранспорте, источниках бесперебойного питания, электроинструментах. Для таких аккумуляторов характерны длительный равномерный разряд и большая его глубина. Стартовые аккумуляторы могут выдать большой ток в короткий промежуток времени, но глубокий разряд для них недопустим.

Электрохимические аккумуляторы имеют ограниченное количество циклов заряда-разряда, в среднем от 250 до 2000. Даже при отсутствии эксплуатации через несколько лет они выходят из строя. Электрохимические аккумуляторы чувствительны к температуре, требуют длительного времени заряда и строгого соблюдения правил эксплуатации.

Прибор необходимо периодически подзаряжать. Заряд аккумулятора, установленного на транспортное средство, производится в движении от генератора. В зимнее время этого недостаточно, холодная батарея плохо принимает заряд, а на запуск двигателя возрастает. Поэтому необходимо дополнительно проводить заряд аккумулятора в теплом помещении специальным зарядным устройством. Одним из существенных недостатков свинцово-кислотных приборов является их большой вес.

Аккумуляторы для маломощных устройств

Если требуются мобильные устройства с малым весом, то выбирают следующие типы аккумуляторов: никель-кадмиевые, литий-ионные, металл-гибридные, полимер-ионные. У них выше удельная емкость, но и цена много больше. Их применяют в мобильных телефонах, ноутбуках, фотоаппаратах, видеокамерах и других малогабаритных устройствах. Разные типы аккумуляторов отличаются своими параметрами: количеством циклов зарядки, сроком хранения, емкостью, размером и т. п.

Литий-ионные аккумуляторы большой мощности применяют в электромобилях и гибридных машинах. Они имеют небольшой вес, большую удельную емкость и высокую надежность. В то же время литий-ионные аккумуляторы очень пожароопасны. Возгорание может произойти от короткого замыкания, механической деформации или разрушения корпуса, нарушений режимов заряда или разряда аккумулятора. Потушить пожар довольно трудно из-за высокой активности лития.

Аккумуляторы являются основой многих приборов. Например, накопитель энергии для телефона - это компактный помещенный в прочный, влагозащищенный корпус. Он позволяет зарядить или запитать сотовый телефон. Мощные мобильные накопители энергии способны заряжать любые цифровые аппараты, даже ноутбуки. В таких устройствах устанавливают, как правило, литий-ионные аккумуляторы большой емкости. Накопители энергии для доматакже необходятся без аккумуляторных батарей. Но это гораздо более сложные устройства. Кроме аккумулятора в их состав входят зарядное устройство, система управления, инвертор. Аппараты могут работать как от стационарной сети, так и от других источников. Выходная мощность в среднем составляет 5 кВт.

Накопители химической энергии

Различают «топливные» и «безтопливные» типы накопителей. Для них требуются специальные технологии и нередко громоздкое высокотехнологичное оборудование. Используемые процессы позволяют получать энергию в разных видах. Термохимические реакции могут проходить как при низкой, так и при высокой температуре. Компоненты для высокотемпературных реакций вводят только тогда, когда необходимо получить энергию. До этого их хранят отдельно, в разных местах. Компоненты для низкотемпературных реакций обычно находятся в одной емкости.

Накопление энергии наработкой топлива

Этот способ включает два совершенно независимых этапа: накопление энергии («зарядка») и ее использование («разрядка»). Традиционное топливо, как правило, обладает большой удельной емкостью энергии, возможностью продолжительного хранения, удобством использования. Но жизнь не стоит на месте. Внедрение новых технологий предъявляет повышенные требования к топливу. Задача решается путем улучшения существующих и создания новых, высокоэнергетических видов топлива.

Широкому внедрению новых образцов препятствует недостаточная отработанность технологических процессов, большая пожаро- и взрывоопасность в работе, необходимость высококвалифицированного персонала, высокая стоимость технологии.

Безтопливное химическое накопление энергии

В этом виде накопителей энергия запасается за счет преобразования одних химических веществ в другие. Например, при нагреве переходит в негашеное состояние. При "разрядке" запасенная энергия выделяется в виде тепла и газа. Именно так происходит при гашении извести водой. Для того чтобы реакция началась, обычно достаточно соединить компоненты. В сущности, это вид термохимической реакции, только протекает она при температуре в сотни и тысячи градусов. Поэтому используемое оборудование гораздо сложнее и дороже.