Почему 1 закон ньютона называют законом инерции. Первый закон ньютона

Если оставить незакрытым сосуд с водой, то через некоторое время вода испарится. Если проделать тот же опыт с этиловым спиртом или бензином, то процесс происходит несколько быстрее. Если кастрюлю с водой нагревать на достаточно мощной горелке, то вода закипит.

Все эти явления являются частным случаем парообразования превращения жидкости в пар. Существует два вида парообразования испарение и кипение.

Что такое испарение

Испарением называют парообразование с поверхности жидкости. Объяснить испарение можно следующим образом.

При соударениях скорости молекул меняются. Часто находятся молекулы, скорость которых настолько велика, что они преодолевают притяжение соседних молекул и отрываются от поверхности жидкости. (Молекулярное строение вещества). Так как даже в небольшом объёме жидкости очень много молекул, такие случаи получаются довольно часто, и идёт постоянный процесс испарения.

Отделившиеся от поверхности жидкости молекулы образуют над ней пар. Некоторые из них вследствие хаотического движения возвращаются обратно в жидкость. Поэтому испарение происходит быстрее, если есть ветер, так как он уносит пар в сторону от жидкости (здесь также имеет место явление «захвата» и отрыва молекул с поверхности жидкости ветром).

Поэтому же в закрытом сосуде испарение быстро прекращается: количество «оторвавшихся» за единицу времени молекул становится равно количеству «вернувшихся» в жидкость.

Интенсивность испарения зависит от рода жидкости: чем меньше притяжение между молекулами жидкости, тем интенсивнее испарение.

Чем больше площадь поверхности жидкости, тем больше молекул имеют возможность покинуть её. Значит, интенсивность испарения зависит от площади поверхности жидкости.

При повышении температуры скорости молекул возрастают. Поэтому чем выше температура, тем интенсивнее испарение.

Что такое кипение

Кипение это интенсивное парообразование, которое происходит в результате нагревания жидкости, образования в ней пузырьков пара, всплывающих на поверхность и разрывающихся там.

Во время кипения температура жидкости остаётся постоянной.

Температура кипения это температура, при которой жидкость кипит. Обычно, говоря о температуре кипения данной жидкости, подразумевают температуру, при которой эта жидкость кипит при нормальном атмосферном давлении.

При парообразовании молекулы, которые отделились от жидкости, уносят из неё часть внутренней энергии. Поэтому при испарении жидкость охлаждается.

Удельная теплота парообразования

Физическую величину, характеризующую количество теплоты, которое требуется для испарения единичной массы вещества, называют удельной теплотой парообразования . (по ссылке более подробный разбор этой темы)

В системе СИ единица измерения этой величины Дж/кг. Её обозначают буквой L.

1.5. Кипение и перегревание жидкости.

Если жидкость в сосуде нагревать при постоянном внешнем давлении со свободной поверхности жидкости. Такой процесс парообразования называется испарением. По достижении определенной температуры, называемом температурой кипения, образование пара начинает происходить не только со свободной поверхности, растут и поднимаются на поверхность пузыри пара, увлекая за собой и саму жидкость. Процесс парообразования приобретает бурный характер. Это явление называется кипением.

По существу кипения есть особый вид испарения. Дело в том, что жидкость никогда не бывает физически однородной. В ней всегда имеются пузырьки воздуха или других газов, но часто настолько малые, что они не видимы невооруженным глазом. На поверхности каждого пузырька непрерывно идет испарение жидкости и конденсация пара, пока не наступит состояние динамического равновесия, в котором эти два противоположно направленные процесса компенсируют друг друга. В состоянии механического равновесия сумма давлений воздуха и пара внутри пузырька должна равняться внешнему давлению вне пузырька. Последнее слагается из давления атмосферы и гидростатического давления окружающей жидкости. Если нагреть жидкость до такой температуры, чтобы давление насыщенного пара превзошло давление вне пузырька, то пузырек начнет расти за счет испарения жидкости с его внутренней поверхности и подниматься вверх под действием архимедовой подъемной силы. Двухфазная система – жидкость с воздушными пузырьками – становится механически неустойчивой, и начинается процесс кипения. Граница неустойчивости определяется такой температурой, при которой давление становится насыщенного пара равно сумме атмосферного и гидростатического давления на рассматриваемой высоте. Это и есть температура кипения.

В отличие от температуры тройной точки, которая для всякого вещества является вполне определенной величиной, температура кипения жидкости зависит от внешнего давления. Она повышается при увеличении внешнего давления и понижается при уменьшении. Так, воду можно заставить кипеть при комнатной температуре. Для демонстрации стеклянную колбу с водопроводной водой помещают под колпак воздушного насоса. При откачке воздуха давление на поверхность воды понижается, и при достижении определенной степени раздражения вода закипает. Теплота, необходимая для превращении жидкости в пар, заимствуется у самой жидкости, поэтому она охлаждается. При продолжительной откачке вода может замерзнуть. Для ускорения процесса замерзания воду наливают в мелкое блюдце, чтобы увеличить свободную поверхность, с которой происходит испарение. Для той же цели под колпак воздушного насоса помещается крепкий раствор серной кислоты, поглощающий водные пары. После одной – двух минут откачка воды в блюдце замерзнет.

Понижение температуры кипения жидкости при уменьшении внешнего давления можно демонстрировать и без воздушного насоса. Берется круглодонная колба среднего размера, наполненная наполовину водопроводной водой. Вода в колбе кипятится в течении 15 минут, чтобы образовавшиеся водяные пары вытеснили из колбы воздух. Затем колба снимается, быстро закупоривается каучуковой пробкой, переворачивается вверх дном и помещается на кольцеобразную подставку. Если колба сверху поливать холодной водой, то часть водяных паров конденсируется в жидкость, давление на поверхность воды уменьшается, и она закипает.

Из изложенного следует, что кипение возможно только тогда, когда внутри жидкости имеются пузырьки газа. Если же таковых нет, т.е. жидкость вполне физически однородна, то парообразование внутри жидкости, т.е. кипение, становится невозможным. Такую жидкость можно нагреть выше температуры кипения. Физически однородную жидкость, температура которой при заданном внешнем давлении превосходит температуру кипения, называется перегретой. Можно сказать иначе. Перегретой называется жидкость, находящаяся под давлением ниже давления ее насыщенных паров при заданной температуре. На изотерме Ван – дер – Ваальса перегретая жидкость изображается точками участка LB , так как давление жидкости на этом участке ниже давления на изотерме – изобаре LCG , где оно равно давлению насыщенного пара. Перегретая жидкость метастабильна, или малоустойчива. Пока нет зародышей более устойчивой парообразной фазы, перегретая жидкость может существовать как физически однородное тело. Однако при наличие таких зародышей, например пузырькового воздуха, она становится неустойчивое и переходит в более устойчивое при данной температуре состояние – пар.

Перегретую воду можно получить, например, в кварцевую колбу с гладкими стенками. Колба тщательно промывать сначала серной, азотной или какой – либо другой кислотой, а затем дистиллированной водой. В промытую колбу наливается дистиллированная вода, из которой продолжительным кипячением удаляется растворенный в ней воздух. После этого воду в колбе можно нагреть на газовой горелке до температуры, значительно превышающей температуру кипения, и тем не менее она не будет кипеть, а только интенсивно испаряться со свободной поверхности. Лишь изредка на дне колбы образуется пузырек пара, который быстро растет, отделяется от дна и поднимается на поверхность жидкости, причем размеры его при поднятии сильно возрастают. Затем вода длительное время остается спокойной. Если в такую воду ввести зародыш газообразной формы, например бросить щепотку чая, то она будет бурно закипать, а ее температура быстро понижается до температуры кипения. Это эффективный опыт носит характер взрыва. Для успеха опыта важно, чтобы стенки колбы были гладкими. Всякие шероховатости и острые края способствуют образованию зародышей газообразной формы. От них непрерывно отделяются и поднимаются на поверхность воды пузырьки пара – вода кипит со дна или стенки колбы, перегревание ее трудно и даже совсем невозможно.

Возникает, однако следующий вопрос. Сколько бы ни очищали воду от растворенного в ней воздуха, последний всегда остается в каком – то, хотя и ничтожном, количестве в виде мельчайших пузырьках. Если даже воду полностью очистить от растворенных в ней газов, то в ней все же могут возникать пузырьки пара флуктуационного происхождения.


Порядка 40%), имеет небольшую прочность и твердость (HB = 65 - I30, в зависимости от величины зерна). Феррит, в зависимости от характера протекающих фазовых превращений, в структуре железоуглеродистых сплавов может находиться в виде различных структурных состояний: феррит, как основа структуры сплава (Ф); феррит, как вторая (избыточная) фаза, располагающаяся по границам перлитных колоний, в виде...




Как в азеотропных смесях коннода вертикальна, нода вырождается в точку. 3. Фазовые эффекты и уравнение Ван-дер-Ваальса для бинарных азеотропных смесей. Фазовые эффекты в бинарных азеотропных смесях. На рисунках 3.1 - 3.4 изображены диаграммы объем - состав фаз, и энтропия – состав фаз для азеотропа с минимумом температуры кипения. Если рассматриваемый состав равен составу...




Si, поскольку эвтектическая температура этой системы крайне мала по сравнению с температурами плавления чистого золота или чистого кремния (рис 9). Растворимости золота в кремнии и кремния в золоте слишком малы, чтобы их отобразить на обычной фазовой диаграмме состояний. Из-за низкой эвтектической температуры оказывается выгодно устанавливать кристаллы микросхем на золотые подложки, держатели или...

Все, что окружает нас в повседневной жизни, можно представить в виде физических и химических процессов. Мы постоянно производим массу манипуляций, которые выражаются формулами и уравнениями, даже не подозревая об этом. Одним из таких процессов является кипение. Это то явление, которое используют абсолютно все хозяйки во время приготовления пищи. Оно кажется нам абсолютно обыденным. Но давайте взглянем на процесс кипения с точки зрения науки.

Кипение - это что такое?

Еще со школьного курса физики известно, что вещество может быть в жидком и газообразном состоянии. Процесс трансформации жидкости в состояние пара - кипение. Это происходит только при достижении или превышении определенного температурного режима. Участвует в данном процессе и давление, его необходимо обязательно учитывать. У каждой жидкости существует собственная температура кипения, запускающая процесс образования пара.

В этом заключается существенная разница между кипением и испарением, происходящим при любом температурном режиме жидкости.

Как происходит кипение?

Если вы когда-нибудь кипятили воду в стеклянной посуде, то наблюдали за образованием пузырьков на стенках емкости в процессе нагревания жидкости. Они образовываются благодаря тому, что в микротрещинах посуды скапливается воздух, который при нагревании начинает расширяться. Пузырьки состоят из паров жидкости, находящихся под давлением. Эти пары называют насыщенными. По мере нагревания жидкости увеличивается давление в пузырьках воздуха и они увеличиваются в размерах. Естественно, что они начинают подниматься наверх.

Но, если жидкость еще не достигла температуры кипения, то в верхних слоях пузырьки охлаждаются, давление снижается и они оказываются на дне емкости, где снова нагреваются и поднимаются вверх. Этот процесс знаком каждой хозяйке, вода будто начинает шуметь. Как только температура жидкости в верхних и нижних слоях сравнивается, пузырьки начинаются подниматься на поверхность и лопаться - происходит кипение. Это возможно только тогда, когда давление внутри пузырьков становится одинаковым с давлением самой жидкости.

Как мы уже упоминали, каждая жидкость имеет свой температурный режим, при котором начинается процесс закипания. Причем в течение всего процесса температура вещества остается неизменной, вся выделенная энергия затрачивается на парообразование. Поэтому у нерадивых хозяек сгорают кастрюли - все их содержимое выкипает и начинает нагреваться сама емкость.

Температура кипения находится в прямо пропорциональной зависимости от давления, оказываемого на всю жидкость, точнее, на ее поверхность. В школьном курсе физике указано, что вода начинает кипеть при температуре в сто градусов по Цельсию. Но мало кто помнит, что данное утверждение верно только в условиях нормального давления. За норму принято считать величину в сто один килопаскаль. Если увеличить давление, то кипение жидкости будет происходить при другой температуре.

Это физическое свойство используют производители современных бытовых приборов. Примером может послужить скороварка. Всем хозяйками известно, что в подобных устройствах пища готовится гораздо быстрее, чем в обычных кастрюлях. С чем это связано? С давлением, которое образуется в скороварке. Оно в два раза превышает норму. Поэтому и кипение воды происходит приблизительно при ста двадцати градусов по Цельсию.

Если вы когда-либо были в горах, то наблюдали обратный процесс. На высоте вода начинает закипать при девяноста градусах, что существенно затрудняет процесс приготовления пищи. С этими трудностями хорошо знакомы местные жители и альпинисты, проводящие в горах все свободное время.

Еще немного о кипении

Многие слышали такое выражение, как "точка кипения" и, вероятно, удивились, что мы его не упомянули в статье. На самом деле мы уже его описали. Не спешите перечитывать текст. Дело в том, что в физике точка и температура процесса кипения считаются идентичными.

В научном мире разделение в данной терминологии производится только в случае смешения различных жидких веществ. В такой ситуации определяется именно точка кипения, причем наименьшая из всех возможных. Именно она и берется за норму для всех составных частей смеси.

Вода: интересные факты о физических процессах

В лабораторных опытах физики всегда берут жидкость без примесей и создают абсолютно идеальные внешние условия. Но в жизни все происходит немного иначе, ведь зачастую мы подсаливаем воду или добавляем в нее различные приправы. Какова будет температура кипения в этом случае?

Соленая вода требует более высокой температуры для закипания, чем пресная. Это связано с примесями натрия и хлора. Их молекулы сталкиваются между собой, и на их нагревание требуется значительно более высокая температура. Существует определенная формула, позволяющая вычислить температуру кипения соленой воды. Учтите, что шестьдесят граммов соли на один литр воды, увеличивают температуру кипения на десять градусов.

А может ли кипеть вода в вакууме? Ученые доказали, что может. Вот только температура кипения в этом случае должна достигать предела трехсот градусов по Цельсию. Ведь в вакууме давление составляет всего лишь четыре килопаскаля.

Все мы кипятим воду в чайнике, поэтому знакомы с таким неприятным явлением, как "накипь". Что это такое и почему она образуется? На самом деле все просто: пресная вода имеет разную степень жесткости. Она определяется количеством примесей в жидкости, чаще всего в ней содержатся различные соли. В процессе кипячения они трансформируются в осадок и в больших количествах превращаются в накипь.

Может ли кипеть спирт?

Кипение спирта используется в процессе самогоноварения и называется дистилляцией. Этот процесс напрямую зависит от количества воды в спиртовом растворе. Если взять за основу чистый этиловый спирт, то температура его кипения будет приближена к семидесяти восьми градусам по Цельсию.

Если вы добавляете в спирт воду, то температура кипения жидкости увеличивается. В зависимости от концентрации раствора он будет закипать в промежутке от семидесяти восьми градусов до ста градусов по Цельсию. Естественно, что в процессе кипения спирт превратится в пар за более короткий временной интервал, чем вода.

Если жидкость нагревать, то при определенной температуре она закипит. При кипении в жидкости образуются пузырьки, которые поднимаются наверх и лопаются. В пузырьках содержится воздух, в котором присутствует водяной пар. Когда пузырьки лопаются, то пар вырывается, и, таким образом, жидкость интенсивно испаряется.

Разные вещества, находящиеся в жидком состоянии, кипят при своей, характерной для них температуре. Причем эта температура зависит не только от характера вещества, но и от атмосферного давления. Так вода при нормальном атмосферном давлении кипит при 100 °C, а в горах, где давление ниже, вода кипит при более низкой температуре.

Когда жидкость закипает, то дальнейший подвод к ней энергии (тепла) не увеличивает ее температуру, а просто поддерживает кипение. То есть энергия тратится на поддержание процесса кипения, а не на поднятие температуры вещества. Поэтому в физике вводится такое понятие как удельная теплота парообразования (L). Она равна количеству тепла, необходимому для того, чтобы полностью выкипел 1 кг жидкости.

Понятно, что у различных веществ своя удельная теплота парообразования. Так у воды она равна 2,3 · 10 6 Дж/кг. У эфира, который кипит при 35 °C, L = 0,4 · 10 6 Дж/кг. У ртути, кипящей при 357 °C, L = 0,3 · 10 6 Дж/кг.

В чем же заключается процесс кипения? Когда вода нагревается, но еще не достигнута температура ее кипения, в ней начинают образовываться маленькие пузырьки. Обычно они образуются на дне емкости, так как обычно нагревают под дном, и там температура выше.

Пузырьки легче окружающей их воды и поэтому начинают подниматься в верхние слои. Однако здесь температура еще ниже, чем у дна. Поэтому пар конденсируется, пузырьки становятся меньше и тяжелее, снова опускаются вниз. Так происходит до тех пор, пока вся вода не прогреется до температуры кипения. В это время слышен шум, предшествующий кипению.

Когда достигнута температура кипения, пузырьки уже не опускаются вниз, а всплывают на поверхность и лопаются. Из них вырывается пар. В это время слышен уже не шум, а бульканье жидкости, которое говорит о том, что она закипела.

Таким образом, при кипении, также как при испарении, происходит переход жидкости в пар. Однако, в отличие от испарения, которое происходит только на поверхности жидкости, кипение сопровождается образованием пузырьков, содержащих пар, по всему объему. Также в отличие от испарения, которое происходит при любой температуре, кипение возможно лишь при определенной, характерной для данной жидкости температуре.

Почему чем выше атмосферное давление, тем температура кипения жидкости больше? Воздух давит на воду, и, следовательно, создается давление внутри воды. Когда образуются пузырьки, в них пар также давит, причем сильнее, чем внешнее давление. Чем больше давление из вне на пузырьки, тем сильнее в них должно быть внутреннее давление. Поэтому они образуются при более высокой температуре. А значит, и вода кипит при более высокой температуре.

Поместим стеклянный сосуд с холодной водой на горелку и будем наблюдать. Скоро дно и стенки сосуда покроются пузырьками; об их происхождении говорилось в § 260. В этих пузырьках, как мы знаем, находятся воздух и пар воды. Пузырьки появляются в тех местах стенок сосуда, где нет полного смачивания. Такими местами могут явиться следы жира на стенке или мелкие трещинки на ней.

Наблюдая за пузырьком при неизменной температуре, мы видим, что он сохраняет свои размеры; значит, давления изнутри и извне на его поверхность взаимно уравновешиваются. Так как внутри пузырька находится воздух, количество которого надо считать постоянным, то это равновесие является устойчивым. Действительно, если бы по какой-либо случайной причине пузырек расширился, то давление воздуха в нем, согласно закону Бойля - Мариотта, уменьшилось бы и внешнее давление, остающееся при этом почти неизменным, снова уменьшило бы пузырек. Рассуждая таким же образом, легко выяснить, почему случайно уменьшившийся пузырек сейчас же снова расширится до прежнего объема. При повышении температуры пузырек постепенно расширяется настолько, что сумма давления воздуха и пара в нем остается равной внешнему давлению. Однако когда пузырек сделается достаточно большим, выталкивающая сила воды заставит его оторваться, подобно тому, как отрывается слишком тяжелая капля воды, повисшая на крыше (рис. 372). При этом между пузырьком и стенкой сосуда образуется все сужающаяся воздушная перемычка (рис. 483) и, наконец, пузырек отрывается, оставляя у стенки небольшое количество воздуха из которого с течением времени разовьется новый пузырек.

Рис. 483. Прилипшие ко дну сосуда с жидкостью и отрывающиеся пузырьки газа

Поднимаясь кверху, оторвавшиеся пузырьки снова уменьшаются в размерах. Почему это происходит? Эти пузырьки содержат пар воды и немного воздуха. Когда пузырек достигает верхних, еще не успевших нагреться слоев воды, то значительная часть водяного пара конденсируется в воду и пузырек уменьшается. Это попеременное увеличение и уменьшение пузырьков сопровождается звуками: закипающая вода «шумит». Наконец, вся вода прогревается в достаточной мере. Тогда поднимающиеся пузырьки уже не уменьшаются в размерах и лопаются на поверхности, выбрасывая пар во внешнее пространство. «Шум» прекращается, и начинается «бульканье» - мы говорим, что вода закипела. Термометр, помещенный в пар над кипящей водой, все время, пока вода кипит, показывает одну и ту же температуру, около .

Очевидно, что при кипении давление паров, образующихся внутри пузырьков у дна сосуда, таково, что пузырьки могут расширяться, преодолевая атмосферное давление, действующее на свободную поверхность воды, а также давление столба воды. Мы приходим к выводу, что кипение происходит при такой температуре, при которой давление насыщенного пара жидкости равно внешнему давлению. Температуру пара кипящей жидкости называют температурой кипения.

Из приведенных рассуждений ясно, что температура кипения должна зависеть от внешнего давления. Это можно легко наблюдать. Поставим стаканчик с теплой водой под колокол воздушного насоса. Откачивая воздух, мы можем заставить воду вскипеть при температуре значительно ниже (рис. 484). Наоборот, при повышении внешнего давления температура кипения повышается. Так, в котлах паровых машин воду нагревают под давлением в несколько атмосфер. Температура кипения при этом значительно превосходит . При давлении около 15 атм температура кипения воды близка к . Когда говорят о температуре кипения жидкости, не указывая давления, всегда имеют в виду температуру кипения при нормальном давлении .

Рис. 484. При откачивании воздуха из-под колокола вода, имеющая температуру значительно ниже , закипает

Зависимость температуры кипения от давления дает нам новый способ измерения атмосферного давления. Измерив температуру кипения воды, можно по таблицам давления пара при разных температурах судить об атмосферном давлении. Если, например, находясь в горах, мы определили, что температура кипения воды около , то отсюда можно заключить (табл. 18), что давление воздуха составляет . Специально приспособленные для таких измерений термометры называют гипсотермометрами. Они устроены так, что дают возможность отсчитывать температуру около с большой точностью (рис. 485).

Рис. 485. Гипсотермометр

Температуры кипения различных жидкостей (при нормальном давлении) сильно разнятся между собой. Это можно видеть из табл. 19.

Таблица 19. Температура кипения некоторых жидкостей при

Жидкость Температура кипения Жидкость Температура кипения
Жидкий гелий -269 Спирт 78
>> водород -253 Вода 100
>> кислород -183 Ртуть 357
>> азот -196 Расплавленный цинк 906
Хлор -34 Расплавленное железо 2880
Эфир -35

Различие температур кипения разных веществ находит большое применение в технике, например при разделении нефтепродуктов. При нагревании нефти раньше всего испаряются наиболее ценные, летучие ее части (бензин), которые можно таким образом отделить от «тяжелых» остатков (масел, мазута).

Различие температур кипения веществ связано с различием в давлении пара при одной и той же температуре. Мы видели, что пар эфира уже при комнатной температуре имеет давление, превышающее половину атмосферного. Поэтому, чтобы давление пара эфира достигло атмосферного, нужно небольшое повышение температуры (до ). Иначе дело обстоит, например, у ртути, имеющей при комнатной температуре совсем ничтожное давление. Давление пара ртути делается равным атмосферному только при значительном повышении температуры (до ).

294.1. Где кипящая вода горячее: на уровне моря, на горе или в глубокой шахте?

294.2. Для некоторых производственных процессов в пищевой промышленности (например, для варки свеклы) требуется температура воды выше . Каким средством этого можно достичь?

294.3. Пользуясь табл. 18, определите наивысшую температуру, которую может иметь вода при давлении и .

294.4. На рис. 486 изображен автоклав (прибор, употребляющийся в химических производствах для процессов, требующих более высокой температуры, чем температура кипения находящейся в нем жидкости). Это - прочный котел с манометром 1, наглухо закрывающийся крышкой так, что пар из него может уходить только через предохранительный клапан 2. Какой температуры достигнет при нагревании котла находящаяся в нем вода, если площадь основания клапана равна и расстояние от опоры 3 до клапана 2 равно 6,5 см, а до гири 4-18 см? Масса гири 1 кг. Массой стержня можно пренебречь.

Рисунок 486. К упражнению 294.4

294.5. Попробуйте вскипятить воду в узкой пробирке, наполненной до края, нагревая ее у дна. Почему в этом случае пузыри выбрасывают воду из пробирки?

Примечание. Нечто подобное происходит в громадных размерах в природе в так называемых гейзерах (в СССР на Камчатке, а также в ряде других стран, например в Исландии). Гейзер - периодически действующий фонтан, выбрасывающий горячую воду из узкого вертикального жерла в земле (рис. 487). Образование пара происходит на глубине нескольких десятков метров. Давление на такой глубине водоема может достигать нескольких атмосфер и вода может нагреваться значительно выше . Когда внизу образуются пузыри пара, то часть воды вытекает, давление падает и парообразование перегретой воды идет с такой интенсивностью, что остающаяся вода выбрасывается на большую высоту.

Рис. 487. Гейзер

294.6. Вскипятите воду в круглодонной колбе и закупорьте ее. Переверните колбу. Если теперь на дно колбы положить немного снега или облить ее холодной водой, то вода в колбе закипит. Объясните явление.