Применение серебра в электротехнике. Свойства и область применения серебра

Сыграло важную роль в развитии капитализма и формировании его хозяйственного механизма. Положение золота, исторически являющегося денежным металлом, изменялось с развитием капиталистических отношений. Каждой стадии капиталистического производства более или менее полно соответствовала определенная денежная система при общей тенденции уменьшения объема денежных функций золота. В настоящее время юридически устранено из денежного обращения и формально утратило всякую связь с денежной системой. Тем не менее, как бывший денежный металл продолжает сохранять ряд важных свойств, выделяющих его из остальной товарной массы.

Прежде всего, золото остается материалом, хранящимся в государственных резервах и частном накоплении, что связано с его высокой мобильностью и ликвидностью, т.е. способностью служить абсолютным покупательным и платежным средством. Для капиталистических государств золото является страховым и резервным фондом, позволяющим в случае крайней необходимости получить платежные средства в любой национальной валюте. И, хотя эти же средства могут быть получены при реализации и других валютных товаров, например, нефти, леса, зерна и т. д., золото по сравнению с ними обладает рядом преимуществ: высокой удельной ценностью, компактностью, транспортабельностью.

Золото обладает уникальным комплексом физических и химических свойств, которого не имеет ни один другой металл. Оно отличается высокой стойкостью к воздействию агрессивных сред, по электро- и теплопроводности уступает лишь серебру и меди. Золото очень технологично, из него легко изготовить сверхтонкую фольгу и микронную проволоку, оно хорошо паяется и сваривается под давлением, золотые покрытия легко наносятся на и керамику. Золото почти полностью отражает инфракрасные лучи, в сплавах обладает каталитической активностью. Такая совокупность полезных свойств золота является причиной его широкого использования в важнейших отраслях современной техники: электронике, технике связи, космической и авиационной технике, ядерной энергетике и т. д.

Золото и его широко применяют для изготовления контактов в слаботочной технике (современные системы связи и управления, ЭВМ). Хорошая электропроводность и неокисляемость золота обеспечивает надежную работу таких контактов в течение длительного срока службы.

В виде тонких покрытий на стекле, керамике, кварце золото широко используют в электронных устройствах, полупроводниковых элементах, микросхемах для передачи электрического тока. Такие пленки: отличаются высокой электропроводностью и коррозионной стойкостью.

Ценными свойствами обладают припои на основе золота. Они могут смачивать самые различные материалы, имеют высокую коррозионную стойкость, технологичность, обеспечивают большую прочность и жаропрочность паяных соединений. Низкое давление пара этих припоев позволяет использовать их для пайки вакуумноплотных швов. Основным потребителем золотых припоев является электронная промышленность, где их применяют для пайки деталей и узлов волноводов, электронных трубок и ламп, радарного оборудования, вакуумных приборов, при монтаже полупроводниковых интегральных схем. Припои; на основе золота используют также для пайки наиболее ответственных узлов ядерных энергетических установок, самолетных и ракетных двигателей, космической аппаратуры и т. д.

Золото и его употребляют для изготовления прецизионных потенциометров, термопар, термометров сопротивления.

Благодаря высокой отражательной способности по отношению к инфракрасным лучам, покрытия золотом используют для защиты космических аппаратов от солнечной радиации. Так, некоторые детали космических кораблей «Аполлон» и снаряжения космонавтов были покрыты тонким слоем золота.

В химической промышленности плакированные золотом стальные трубы служат для транспортирования особо агрессивных жидкостей, Некоторые золота применяют в качестве катализаторов.

Значительные количества золота потребляет стоматология: коронки и зубные протезы изготовляют из сплавов золота с серебром, медью, никелем, платиной, цинком. Такие сплавы сочетают коррозионную стойкость с высокими механическими свойствами.

Соединения золота входят в состав некоторых медицинских препаратов, используемых для лечения ряда заболеваний (туберкулеза, ревматических артритов и т.д.). Радиактивное золото используют при лечении злокачественных опухолей.

Традиционным и самым крупным потребителем золота является ювелирная промышленность. Ювелирные изделия изготовляют не из чистого золота, а из его сплавов с другими металлами, значительно превосходящими золото по механической прочности и стойкости. В настоящее время для этого служат сплавы Au-Ag-Сu, которые могут содержать добавки цинка, никеля, кобальта, палладия. Стойкость к коррозии таких сплавов определяется, в основном, содержанием в них золота, а цветовые оттенки и механические свойства - соотношением серебра и меди.

Важнейшей характеристикой ювелирных изделий является их проба, характеризующая содержание в них золота (для серебряных или платиновых изделий - соответственно серебра или платины). В нашей стране установлена метрическая система проб, в которой содержание золота обозначается числом частей по массе в 1000 частях сплава. Эта же система принята в большинстве стран. В соответствии с ней чистое золото имеет пробу 1000. До 1927 г. в России существовала золотниковая система обозначения проб, по которой содержание золота выражалось числом золотников в одном фунте сплава. По этой системе чистому золоту соответствовала проба 96. В ряде стран (США, Великобритания, Швейцария) принята каратная система, по которой чистое золото (проба 1000) соответствует 24 условным единицам - каратам. Пробность сплавов в различных системах приведена ниже.

Метрическая….. 1000 958 750 583 375

Золотниковая …. 96 92 72 56 36

Каратная…… 24 23 18 4 9

В СНГ основную массу ювелирных изделий выпускают из сплавов проб 750, 583 и 375. За рубежом широко используют 18- и 14-каратные сплавы, а также применяют 10- и 12-каратные сплавы для плакирования неблагородных металлов.

Довольно значительное количество золота идет на чеканку монет и медалей, декоративные покрытия и т. п.

Следует отметить, что хотя в общем объеме промышленного потребления, включая ювелирную промышленность и стоматологию, доля золота, расходуемого на чисто промышленные цели (электроника, техника связи, ядерная энергетика, космическая техника и т. п.) составляет всего 10-15 %, значение золота в развитии новейших отраслей техники весьма существенно и неуклонно возрастает несмотря на высокую стоимость 2 этого металла.

Подобно золоту, обладает замечательными техническими свойствами, благодаря которым его широко применяют в промышленности. отличается самой высокой среди металлов электро- и теплопроводностью, сочетающейся с низкой химической активностью пластичностью большой отражательной способностью. Весьма ценными свойствами обладают некоторые соединения серебра, В отличие от золота, основную массу которого используют в ювелирной и связанной с ней отраслях промышленности, серебро, в основном расходуют на чисто технические цели.

Важнейшей сферой потребления серебра является производство светочувствительных материалов для кино- и фотопромышленности. Расход серебра на производство кино- и фотоматериалов неуклонно возрастает, однако, несмотря на все усилия ученых, полноценных заменителей серебра для этих целей пока не найдено.

Крупной областью применения серебра является электротехника и электроника, где высокая электропроводность серебра в сочетании с химической стойкостью предопределили широкое использование его дли изготовления контактов и проводников.

Значительное количество серебра расходуется на изготовление-припоев для пайки различных металлов и сплавов. Серебряные припои дают прочные и пластичные спаи, противостоящие ударам и вибрации. Стойкость к окислению обусловила широкое применение серебряных припоев в авиационной и космической технике, а хорошая электропроводность - в электротехнике.

Высокими разрядными характеристиками обладают серебряно-цинковые и серебряно-кадмиевые аккумуляторы, применяемые в ракетной технике, подводном флоте и т. д. Миниатюрные батареи, содержащие

Серебро - Ag, минерал класса самородных элементов, кристаллизуется в кубической сингонии, кубически-гексоктаэдрический вид симметрии. Встречается в аргенитах (сульфид) и роговом серебре (хлорид серебра), добывается также как побочный товар очистки купрума и свинца. Серебро было одним из первых металлов, освоенных человеком. Является великолепным проводником тепла и электричества. Главным производителем серебра является Мексика, хотя серебряные руды разбросаны по всему миру.

Смотрите так же:

СТРУКТУРА

Сингония кубическая; гексаоктаэдрический в. с. ЗL 4 4L 6 3 6L 2 9РС. Кристаллическая структура. Гранецентрированный куб. Облик кристаллов. Правильно образованные кристаллы очень редки. Встречающиеся формы: {100}, {111}. Двойники по (111). Агрегаты. Встречается иногда в виде типичных «вязаных» перистых дендритов, тонких неправильных пластин и листочков. Характерны также моховидные, волосовидные и проводочные формы. Наиболее распространены зерна неправильной формы и более крупные сплошные скопления — самородки.

СВОЙСТВА

Цвет серебряно-белый, часто с жёлтой, коричневой или черной побежалостью. Серебро с поверхности довольно быстро окисляется на воздухе и тем быстрее, чем больше примесей оно содержит, при этом цвет поверхности изменяется до чёрного с отливом различных оттенков. Блеск металлический до матового, цвет черты серебряно-белый, блестящий. Твердость 2,5 -3. Плотность 9,6 -12. Спайность отсутствует, излом раковистый. Весьма пластичное, гибкое, ковкое. Обладает максимальной среди металлов тепло- и электропроводностью. Является диамагнетиком. Под паяльной трубкой легко плавится. С НСI реагирует, образуя белый творожистый осадок (АgCl). Реакция с Н 2 S дает чёрное окрашивание.

ЗАПАСЫ И ДОБЫЧА

По СССР крупные месторождения не известны. Самородки серебра в прежнее время находили в Турьинских рудниках на Северном Урале, в ряде свинцово-цинковых месторождений Алтая, Казахстана, Восточной Сибири и в других местах.
Из иностранных месторождений большой известностью пользовались месторождения: Конгсберг(Норвегия), где самородное серебро встречалось до глубины 900 м, Кобальт(Канада), Шнееберг(Германия).
Добыча серебросодержащих руд может производиться подземным или открытым способом. Сначала при помощи специальных приборов геологоразведчики проверяют шахты под землей на предмет содержания полезных ископаемых и драгоценных металлов. После обнаружения богатых серебром участков в соответствующих местах делают отверстия, в которые закладывают взрывчатку. Поднятые взрывом на поверхность шахты осколки серебросодержащей руды измельчают промышленным способом. Из руды драгоценный металл извлекают методами амальгации и цианирования.

ПРОИСХОЖДЕНИЕ

Образование самородного серебра в природе во многом аналогично образованию меди. Оно вместе с другими серебросодержащими минералами встречается в гидротермальных жильных месторождениях в ассоциации с аргентитом (Ag2S) и кальцитом (месторождение Конгсберг в Норвегии), иногда в ассоциации со сложными сернистыми, мышьяковистыми, сурьмянистыми соединениями разных металлов, в том числе никеля и кобальта.
В экзогенных условиях оно, так же как и самородная медь, встречается в зонах окисления месторождений сернистых и мышьяково-сурьмянистых руд, являясь продуктом их разложения и восстановления из поверхностных растворов различными органическими соединениями. Образующееся в этих условиях самородное серебро нередко имеет вид дендритов, пластинок, моховидных, проволочных, волосовидных форм и др. Экспериментально доказано, что тончайшие нитевидные и дендритовые образования, иногда в виде красивых узоров, образуются на кусочках угля из раствора, особенно в присутствии растворимых органических соединений.
В поверхностных условиях самородное серебро менее устойчиво, чем золото. Оно часто покрывается пленками и примазками черного цвета. В местностях с жарким, сухим климатом с поверхности нередко переходит в устойчивые галоидные соединения (AgCl и др.).

ПРИМЕНЕНИЕ

Серебро применяется главным образом в сплавах с медью для выделки серебряных изделий, монет и др. Чистое серебро употребляется для филигранных работ, изготовления тиглей для плавления щелочей, для серебрения, для получения химических соединений и других целей. Главная масса серебра (около 80%) добывается не в самородном виде, а в качестве побочного продукта из богатых серебром свинцово-цинковых, золотых и медных месторождений.
Области применения серебра постоянно расширяются, и его применение - это не только сплавы, но и химические соединения. Определённое количество серебра постоянно расходуется для производства серебряно-цинковых и серебряно-кадмиевых аккумуляторных батарей, обладающих очень высокой энергоплотностью и массовой энергоёмкостью и способных при малом внутреннем сопротивлении выдавать в нагрузку очень большие токи.

Серебро (англ. Silver) — Ag

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.2

Strunz (8-ое издание) 1/A.01-20
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.1.2
Dana (8-ое издание) 1.1.1.2

ОПРЕДЕЛЕНИЕ

Серебро - сорок седьмой элемент Периодической таблицы. Обозначение - Ag от латинского «argentum». Расположен в пятом периоде, IB группе. Относится к металлам. Заряд ядра равен 47.

Серебро распространено в природе значительно меньше, чем, например, медь; содержание его в земной коре составляет 10 -5 % (масс.). В некоторых местах (например, в Канаде) серебро встречается в самородном состоянии, но большую часть серебра из его соединений. Самой важной серебряной рудой является серебряный блеск, или агрентит, Ag 2 S.

В качестве примеси серебро присутствует почти во всех медных и особенно свинцовых рудах. Из этих руд получают около 80% всего добываемого серебра.

Чистое серебро - очень мягкий, тягучий металл (рис. 1), оно лучше всех металлов проводит теплоту и электрический ток.

Серебро - малоактивный металл. В атмосфере воздуха оно не окисляется ни при комнатных температурах, ни при нагревании. Часто наблюдаемое почернение серебряных предметов - результат образования на поверхности черного сульфида серебра Ag 2 S.

Рис. 1. Серебро. Внешний вид.

Атомная и молекулярная масса серебра

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии серебро существует в виде одноатомных молекул Ag, значения его атомной и молекулярной масс совпадают. Они равны 107,8682.

Изотопы серебра

Известно, что в природе серебро может находиться в виде двух стабильных изотопов 107 Ag и 109 Ag. Их массовые числа равны 107 и 109 соответственно. Ядро атома изотопа серебра 107 Ag содержит сорок семь протонов и шестьдесят нейтронов, а изотопа 109 Ag - такое число протонов и шестьдесят два нейтрона.

Существуют искусственные нестабильные изотопы серебра с массовыми числами от 93-х до 130-ти, а также тридцать шесть изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 104 Ag с периодом полураспада равным 69,2 минуты.

Ионы серебра

На внешнем энергетическом уровне атома серебра имеется один электрон, который является валентным:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 9 5s 2 .

В результате химического взаимодействия серебро отдает свой валентный электрон, т.е. является его донором, и превращается в положительно заряженный ион:

Ag 0 -1e → Ag + ;

Ag 0 -2e → Ag 2+ .

Молекула и атом серебра

В свободном состоянии серебро существует в виде одноатомных молекул Ag. Приведем некоторые свойства, характеризующие атом и молекулу серебра:

Сплавы серебра

На практике чистое серебро вследствие мягкости почти не применяется: обычно его сплавляют с большим или меньшим количеством меди. Сплавы серебра служат для изготовления ювелирных и бытовых изделий, монет, лабораторной посуды.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание При растворении 3 г сплава меди и серебра в концентрированной азотной кислоте получили 7,34 г смеси нитратов. Определите массовые доли металлов в сплаве.
Решение Запишем уравнения реакций взаимодействия металлов, представляющих собой сплав (медь и серебро), в концентрированной азотной кислоте:

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O (1);

Ag + 2HNO 3 = AgNO 3 + NO 2 + H 2 O (2).

В результате реакции образуется смесь, состоящая из нитрата серебра и нитрата меди (II). Пусть количество вещества меди в сплаве составляет х моль, а количество вещества серебра - у моль. Тогда массы этих металлов будут равны (молярная масса меди 64 г/моль, серебра - 108 г/моль):

m (Cu) = n (Cu) × M (Cu);

m (Cu)= x × 64 = 64x.

m (Ag) = n (Ag) × M (Ag);

m (Ag)= x × 108 = 108y.

Согласно условию задачи, масса сплава равна 3 г, т.е.:

m (Cu) + m (Ag) = 3;

64х + 108у = 3.

По уравнению (1) n(Cu) : n(Cu(NO 3) 2) = 1:1, значит n(Cu(NO 3) 2) = n(Cu) =х. Тогда масса нитрата меди (II) составляет (молярная масса равна 188 г/моль) 188х.

Согласно уравнению (2), n(Ag) : n(AgNO 3) = 1:1, значит n(AgNO 3) = n(Ag) =y. Тогда масса нитрата серебра составляет (молярная масса равна 170 г/моль) 170y.

По условию задачи масса смеси нитратов равна 7,34 г:

m (Cu(NO 3) 2) + m (AgNO 3) =7,34 ;

188 х + 170 у = 7,34.

Получили систему уравнений с двумя неизвестными:

Выразим из первого уравнения х и подставим это значение во второе уравнение, т.е. решим систему методом подстановки.

Значит количество вещества серебра равно 0,01 моль. Тогда, масса серебра в сплаве равна:

m (Ag) = n (Ag) × M (Ag) = 0,01 × 108 = 1,08г.

Не вычисляя x можно найти массу меди в сплаве:

m (Cu) = m alloy - m (Ag) = 3 - 1,08 = 1,92 г.

Определим массовые доли металлов в смеси:

ω(Me)= m(Me) / m alloy × 100%;

ω (Cu)= 1,92 / 3 × 100% = 64%;

ω (Ag)= 1,08 / 2 × 100% = 36%.

Ответ Массовая доля меди в сплаве равна 64%, серебра - 36%.

За что человек любит серебро? В первую очередь – за красоту! Серебряные украшения ценились во все века. Характерный внешний вид благородного металла стал нарицательным понятием. Выражение «алмазная твердость» не требует уточнения; точно так же не возникает проблем с пониманием «серебряного» или «серебристого блеска».


Быть эталоном красоты – почетная обязанность серебра. С давних лет приносит драгоценный металл и практическую пользу.

Серебро в первую очередь – сокровище

Не превратиться в предмет накопления серебро просто не могло. Обладание самородными серебряными слитками первоначально являлось самоцелью у каждого искателя металлов. Такова природа человеческой психологии: мы склонны к накоплению вещей, вызывающих позитивный эстетический отклик в душе. Серебряные самородки заменяли нашим пращурам еще не созданные культурные ценности.

Так что нет ничего удивительно в том, что вскоре после обретения человеком самосознания серебро сделалось объектом вожделения. А раз так – стало предметом накопления, превратилось в драгоценность.

Лидийцы изобрели монету

Это сегодня деньги, как количественный эквивалент труда, являют собой условность. За многие сотни лет до нашей эры деньги представляли собой совершенно самостоятельную ценность. Потому что чеканились денежные знаки (монеты) – из золота и серебра!

Введение в оборот серебряных монет, предпринятое древними греками за тысячу лет до Новой Эры, ознаменовало революционные изменения в судьбе благородного металла. С тех прошли десятки веков. Уже давно фактическая стоимость серебра превышает всякий мыслимый номинал монеты, но выпуск серебряных денег – в качестве объекта инвестирования и коллекционирования – продолжается.

Серебряные украшения популярней золотых?

Во многих случаях – да! Парадокс серебра как ювелирного материала известен несколько веков, если не тысячелетий. По всем законам колористики цвет благородного металла относится к «холодным» оттенкам. Однако блеск серебра мы воспринимаем как живой и теплый, манящий и загадочный, чарующий и притягательный.

В отличие от тускловатого величия платины, бескомпромиссного жара золота и бесстрастного отблеска нержавеющей стали, сияние серебра ощущается человеком как нечто близкое, интимное, проникновенное. Серебряный блеск глубок: ювелирное изделие из серебра словно светится внутренним светом.

Таково субъективное восприятие серебра человеком. Объективно же этот металл – незаменимая оправа для драгоценных камней любого качества и оттенка. «Закованные» в серебро бесцветные камни играют всеми цветами радуги. Едва оцвеченные минералы в серебряной оправе выглядят контрастно и броско. Малые скульптурные формы, выполненные из серебра, воспринимаются с сильнейшим душевным откликом – об этом писал еще Бенвенуто Челлини...

Серебром лечат...

...причем с глубокой древности. Бактерицидные свойства серебра были известны еще персидским завоевателям. Бурдюки осеребренной воды транспортировались их караванами месяцами – и влага оставалась живительной и свежей.

Сегодня серебро активно используется в опреснительных установках океанских лайнеров. Электрохимическое растворение десяти граммов серебра в пятидесяти кубометрах воды полностью обеззараживает жидкость.

Древние египтяне и вслед за ними греки использовали серебряные пластины как лечебные аппликаторы для ран – и им действительно во многих случаях удавалось избежать гнойных осложнений. В наше время для достижения сходных целей применяется раствор коллоидного серебра. Некоторые галеновы препараты содержат в себе различные соединения серебра.

Сплав из 75% серебра и 25% палладия используется для зубного протезирования. Сплавы серебра с золотом, медью, оловом, цинком и ртутью представляют собой эффективный пломбировочный материал.

Техническое серебро

Техническим серебром называются серебряные сплавы, находящие применение в приборах и машинах. Серебряные припои не окисляются даже в присутствии компонентов ракетного топлива. Легкие, прочные, устойчивые к воздействию агрессивных сред и сил титановые детали спаиваются только чистым серебром.

Эталонная электропроводность серебра сделала этот металл материалом выбора в ответственных узлах электроники. Там, где даже незаметная окисная пленка создает помехи для движения микротоков, используются серебряные токопроводящие детали. Благородный металл не меняет своих свойств, обеспечивая высокую работоспособность прибора в течение расчетного срока эксплуатации.

Для разгона облаков в воздухе распыляется йодистое серебро. Масштабная завеса из йодида серебра способна изменить мощность циклона: увеличивая темпы конденсации водяных паров, серебряный реагент лишает вихрь энергетической подпитки. В результате скорость ветра снижается, разрушительная способность грозного природного явления падает.

Высокая отражающая способность серебра востребована не только в конструкциях зеркал и рефлекторов. Трубчатые волноводы, предназначенные для передачи высокочастотных электромагнитных колебаний, имеют серебряное покрытие.

Промышленная химия нередко использует серебро в качестве катализатора процессов органического синтеза. Кристаллы фторида серебра способны генерировать лазерные лучи ультрафиолетового диапазона. Карбид серебра взрывоопасен: это свойство сделало его одним из материалов производства детонаторов. Хлорид серебра – действующий реагент высокоемкостных серебряно-цинковых аккумуляторных батарей. Пленочная фотография немыслима без использования светочувствительного нитрата серебра.

Серебро в стекле

О свинцовом стекле известно всем. Это хрусталь – бесцветный, переливающийся в лучах яркого освещения. А вот стекло, в которое при варке добавлено азотнокислое серебро, бесцветным остается недолго. Всего лишь две десятых процента благородного металла – и стекло обретает красивую желтую окраску – но не сразу...

Что любопытно в технологическом процессе, AgNO3 выступает лишь в роли носителя иона серебра. При растворении в жидкой стеклянной массе мельчайшие частички серебра насыщают расплавленный оксид кремния, однако внешне это не проявляется никак. Лишь отжиг уже готового стекла приводит к проявлению цвета. Так изготавливаются светофильтры высокого качества.

Свойство галогенидов серебра разлагаться с выделением металлического серебра под действием света позволяет создавать реагирующие на уровень освещенности светофильтры. Растворенные в стекле галогениды меняют прозрачность светофильтра с 88% (при неярком освещении) до 22% (и даже до 5%) при ярком солнечном свете. Популярнейшие очки-хамелеоны оснащены именно такими стеклами.


Для получения оранжевого стекла используется смесь золота и серебра. При этом лучше всего драгоценные металлы принимает хрусталь, 24% которого составляет оксид свинца PbO.

Высокая химическая активность азотнокислого серебра снискала ему славу «адского камня». Еще во времена алхимиков AgNO3 получил прозвище «ляпис инферналис». Ляписом состав зовется по сей день, хотя в переводе с латинского это слово обозначает всего лишь «камень».

Проект космического зеркала

В 1968-м году Совет Безопасности ООН рассматривал протест, поданный делегацией Камбоджи. Азиатское государство воспротивилось планам Америки запустить на орбиту складную конструкцию огромного зеркала.

Предполагалось, что полимерная емкость с серебряным покрытием будет наполнена разреженным газом, и этот надувной «матрац» послужит зеркалом для ночного освещения территории в 100 тысяч квадратных километров.

Однако ночное освещение снижает продуктивность растениеводства, и реализовать амбициозный проект Соединенным Штатам было запрещено.

Около 30-40% всего производимого серебра расходуется на производство кино и фотоматериалов. 20% серебра в виде сплавов с золотом, палладием, медью или цинком используется для изготовления контактов, припоев, проводящих слоев в электротехнике и электронике.

20-25% произведенного серебра служит для производства серебряно-цинковых аккумуляторов. Из сплава на основе серебра изготовляют монеты, ювелирные изделия, украшения и столовую посуду.

Старинное применение серебра – изготовление зеркал (сейчас недорогие зеркала покрывают алюминием). Из серебра делают электроды для мощных цинк-серебряных аккумуляторов. Так, в аккумуляторах затонувшей американской подводной лодки «Трешер» было три тонны серебра. Высокую теплопроводность и химическую инертность серебра используют в электротехнике: из серебра и его сплавов делают электрические контакты, серебром покрывают провода в ответственных приборах. Из серебряно-палладиевого сплава (75% Ag) делают зубные протезы.

Огромные количества серебра раньше шли на изготовление монет. Сейчас из серебра делают в основном юбилейные и памятные монеты. Самая тяжелая современная серебряная монета, выпущенная в России в 1999, весит 3000 граммов, имеет тираж 150 штук. Посвящена она 275-летию Санкт-петербургского монетного двора. При высоком содержании серебра монеты и другие изделия весьма устойчивы на воздухе. Низкопробное серебро часто зеленеет. Зеленый налет содержит основной карбонат меди (CuOH) 2 CO 3 . Он образуется под действием углекислого газа, паров воды и кислорода.

Соединения серебра часто неустойчивы к нагреванию и действию света. Открытие светочувствительности солей серебра привело к появлению фотографии и быстрому увеличению спроса на серебро. Еще в середине 20 во всем мире ежегодно добывалось около 10 000 тонн серебра, а расходовалось значительно больше (дефицит покрывался за счет старых запасов). Причем почти половина всего серебра шла на изготовление кино- и фотоматериалов. Так, обычная черно-белая фотопленка содержит (до проявления) до 5 г/м 2 серебра. Вытеснение черно-белых фотографий и кинофильмов цветными позволило значительно снизить потребление серебра.

Серебро применяется и в химической промышленности для изготовления катализаторов некоторых процессов, а в пищевой промышленности из серебра делают некорродирующие аппараты. Интересное, хотя и ограниченное применение находит иодид серебра; его используют для местного управления погодой путем распыления с самолетов. В присутствии даже ничтожных количеств AgI в облаках образуются крупные водяные капли, которые и выпадают в виде дождя. «Работать» могут уже мельчайшие частицы иодида серебра размером всего 0,01 мкм. Теоретически из кубического кристалла AgI размером всего 1 см можно получить 10 21 таких мельчайших частиц. Как подсчитали американские метеорологи, всего 50 кг иодида серебра вещества достаточно для «затравки» всей атмосферы над поверхностью США (а это 9 млн. квадратных километров!). Поэтому, несмотря на сравнительно высокую стоимость солей серебра, применение AgI с целью вызвать искусственный дождь оказывается практически выгодным.