Почему 1 закон ньютона называют законом инерции. Первый закон ньютона

Эти знания быстро улетучиваются, и постепенно люди прекращают обращать внимание на сущность привычных явлений. Иногда бывает полезно вспомнить теоретические знания.

Определение

Что такое кипение? Это физический процесс, в ходе которого происходит интенсивное парообразование как на свободной поверхности жидкости, так и внутри ее структуры. Одним из признаков кипения является образование пузырьков, которые состоят из насыщенного пара и воздуха.

Стоит отметить существование такого понятия, как температура кипения. От давления также зависит скорость образования пара. Оно должно быть постоянным. Как правило, основной характеристикой жидких химических веществ является температура кипения при нормальном атмосферном давлении. Тем не менее на данный процесс также могут оказать влияние такие факторы, как интенсивность звуковых волн, ионизация воздуха.

Стадии кипения воды

Непременно начинает образовываться пар во время такой процедуры, как нагревание. Кипение подразумевает прохождение жидкости через 4 стадии:

  1. На дне сосуда, а также на его стенках начинают образовываться небольшие пузырьки. Это является результатом того, что в трещинках материала, из которого изготовлена емкость, содержится воздух, который расширяется под воздействием высокой температуры.
  2. Пузырьки начинают увеличиваться в объеме, в результате чего они вырываются на поверхность воды. Если верхний слой жидкости еще не достиг температуры кипения, полости опускаются ко дну, после чего снова начинают стремиться вверх. Этот процесс приводит к образованию звуковых волн. Именно поэтому во время кипения воды мы можем услышать шум.
  3. На поверхность выплывает наибольшее количество пузырьков, что создает впечатление После этого жидкость бледнеет. Учитывая визуальный эффект, данную стадию кипения называют "белым ключом".
  4. Наблюдается интенсивное бурление, которое сопровождается образованием больших пузырей, которые быстро лопаются. Этот процесс сопровождается появлением брызг, а также интенсивным образованием пара.

Удельная теплота парообразования

Практически ежедневно мы сталкиваемся с таким явлением, как кипение. Удельная теплота парообразования представляет собой физическую величину, которая определяет количество теплоты. С ее помощью жидкое вещество может быть обращено в пар. Для того чтобы рассчитать данный параметр, нужно разделить показатель теплоты испарения на массу.

Как происходит измерение

Показатель удельной измеряется в лабораторных условиях путем проведения соответствующих экспериментов. Они включают в себя следующие действия:

  • отмеряется необходимое количество жидкости, которое затем переливается в калориметр;
  • проводится первоначальный замер температуры воды;
  • на горелку устанавливается колба с заранее помещенным в нее исследуемым веществом;
  • пар, выделяемый исследуемым веществом, запускается в калориметр;
  • производится повторный замер температуры воды;
  • калориметр подвергается взвешиванию, что позволяет вычислить массу сконденсированного пара.

Пузырьковый режим кипения

Разбираясь с вопросом о том, что такое кипение, стоит отметить, что оно имеет несколько режимов. Так, при нагревании пар может образовываться в виде пузырей. Они периодически растут и лопаются. Такой режим кипения называется пузырьковым. Обычно полости, наполненные паром образуются именно у стенок сосуда. Это связано с тем, что они, как правило, перегреты. Это необходимое условие для кипения, ведь в противном случае пузырьки будут схлопываться, не достигая больших размеров.

Пленочный режим кипения

Что такое кипение? Проще всего объяснить этот процесс как парообразование при определенной температуре и постоянном давлении. Помимо пузырькового режима, выделяют также пленочный. Его сущность состоит в том, что при усилении теплового потока отдельные пузырьки объединяются, образуя паровой слой на стенках сосуда. При достижении критического показателя они прорываются на поверхность воды. Данный режим кипения отличается тем, что степень теплопередачи от стенок сосуда к самой жидкости значительно снижается. Причиной этому становится та самая паровая пленка.

Температура кипения

Стоит отметить, что существует зависимость температуры кипения от давления, которое оказывается на поверхность нагреваемой жидкости. Так, принято считать, что вода кипит при нагревании до 100 градусов Цельсия. Тем не менее данный показатель можно считать справедливым лишь в том случае, если показатель атмосферного давления будет считаться нормальным (101 кПа). Если же оно будет увеличиваться, температура кипения также поменяется в сторону повышения. Так, например, в популярных кастрюлях-скороварках давление равно примерно 200 кПа. Таким образом, температура кипения повышается на 20 пунктов (до 20 градусов).

Примером низкого атмосферного давления можно считать горные районы. Так, учитывая, что там оно достаточно небольшое, вода начинает закипать при температуре около 90 градусов. Жителям подобных районов приходится тратить намного больше времени на приготовление пищи. Так, например, чтобы сварить яйцо, придется нагреть воду не меньше, чем на 100 градусов, иначе белок не свернется.

Кипение вещества зависит от показателя давления насыщенного пара. Влияние его на температуру обратно пропорционально. Например, ртуть закипает при нагревании до 357 градусов Цельсия. Это можно объяснить тем, что давление насыщенных паров равно всего лишь 114 Па (для воды данный показатель составляет 101 325 Па).

Кипение в разных условиях

В зависимости от условий и состояния жидкости, температура кипения может существенно отличаться. Например, стоит добавить в жидкость соль. Ионы хлора и натрия размещаются между молекулами воды. Таким образом, на закипание требуется на порядок больше энергии, а соответственно - времени. Кроме того, такая вода образует намного меньше пара.

Чайник используется для кипячения воды в бытовых условиях. Если используется чистая жидкость, то температура данного процесса составляет стандартные 100 градусов. При аналогичных условиях закипает дистиллированная вода. Тем не менее будет затрачено немного меньше времени, если учесть отсутствие посторонних примесей.

Чем отличается кипение от испарения

Всякий раз, когда происходит кипение воды, пар выделяется в атмосферу. Но эти два процесса нельзя отождествлять. Они являются лишь способами парообразования, которое происходит при определенных условиях. Так, кипение - это первого рода. Данный процесс является более интенсивным, чем обусловлено образованием паровых очагов. Также стоит отметить, что процесс испарения происходит исключительно на поверхности воды. Кипение же касается всего объема жидкости.

От чего зависит испарение

Испарение представляет собой процесс преобразования жидкого или твердого вещества в газообразное состояние. Происходит "вылетание" атомов и молекул, связь которых с остальными частицами оказывается ослабленной под воздействием определенных условий. Скорость испарения может изменяться под влиянием следующих факторов:

  • площадь поверхности жидкости;
  • температура самого вещества, а также окружающей среды;
  • скорость движения молекул;
  • вид вещества.

Энергия кипения воды широко используется человеком в быту. Данный процесс стал настолько обыденным и привычным, что никто не задумывается о его природе и особенностях. Тем не менее с кипением связан целый ряд интересных фактов:

  • Наверное, все замечали, что в крышке чайника есть отверстие, но мало кто задумывается о его предназначении. Оно проделывается с той целью, чтобы частично выпускать пар. В противном случае вода может расплескаться через носик.
  • Продолжительность варки картофеля, яиц и прочих продуктов питания не зависит от того, насколько мощным является нагреватель. Имеет значение лишь тот факт, как долго они находились под воздействием кипящей воды.
  • На такой показатель, как температура кипения, никак не влияет мощность нагревательного прибора. Она может сказаться лишь на скорости испарения жидкости.
  • Кипение связано не только с нагреванием воды. При помощи данного процесса можно также заставить жидкость замерзнуть. Так, в процессе кипения нужно производить непрерывную откачку воздуха из сосуда.
  • Одна из самых актуальных проблем для хозяек заключается в том, что молоко может "убежать". Так, риск этого явления значительно повышается во время ухудшения погоды, которое сопровождается падением атмосферного давления.
  • Самый горячий кипяток получается в глубоких подземных шахтах.
  • Путем экспериментальных исследований ученым удалось установить, что на Марсе вода закипает при температуре 45 градусов Цельсия.

Может ли вода кипеть при комнатной температуре?

Путем несложных подсчетов ученым удалось установить, что вода может закипеть при на уровне стратосферы. Аналогичные условия можно воссоздать при помощи вакуумного насоса. Тем не менее подобный опыт можно провести и в более простых, приземленных условиях.

В литровой колбе нужно вскипятить 200 мл воды, а когда емкость заполнится паром, ее нужно плотно закрыть, снять с огня. Поместив ее над кристаллизатором, нужно дождаться окончания процесса кипения. Далее колбу обливают холодной водой. После этого в емкости снова начнется интенсивное кипение. Это связано с тем, что под воздействием низкой температуры пар, находящийся в верхней части колбы, опускается.

Cтраница 1


Кипение жидкости происходит при одинаковой температуре всей жидкости, когда давление насыщающего пара равно внешнему давлению.  

Кипение жидкости наступает тогда, когда упругость ее паров, насыщающих пространство, будет равна внешнему давлению.  

Кипение жидкости на поверхности нагрева наблюдается в том случае, когда температура поверхности tc выше температуры насыщения tH при данном давлении. Различают пузырчатый и пленочный режимы кипения.  

Кипение жидкости при комнатной температуре и пониженном давлении также используется в технике. В частности, в СССР изобретена стиральная машина, работающая на этом принципе.  

Кипение жидкости должно протекать спокойно. Образующийся иодид олова облегчает кипение.  

Кипение жидкости, которое является частным случаем испарения, наблюдается ири той температуре, при которой давление насыщенных паров становится равным внешнему давлению. Температура кипения жидкости при нормальном давлении называется точкой кипения жидкости. Чтобы жидкость продолжала кипеть, необходимо непрерывно ее подогревать. Эта затрата тепла не повышает энергии движения молекул, потому и не обнаруживается термометром. Количество теплоты, которое необходимо затратить, чтобы 1 г или 1 кг жидкости при температуре ее кипения перевести в пар той же температуры, называется удельной теплотой парообразования.  

Кипение жидкости и конденсация пара служат примерами фазовых переходов первого рода. Характерная особенность всех фазовых переходов первого рода состоит в том, что в этих процессах одновременно постоянны давление и температура, но зато изменяется соотношение между массами двух фаз. Второй особенностью этих процессов является то, что для их осуществления необходимо подводить к системе или отводить от нее некоторое количество теплоты, называемое теплотой фазового перехода.  


Кипение жидкости происходит тогда, когда давление ее паров равно внешнему давлению.  

Кипение жидкости начинается, когда упругость ее паров становится равной внешнему давлению. Если это давление понизить, то соответственно снизится и упругость паров, требующаяся для кипения, а более низкая упругость паров достигается при более низкой температуре нагрева.  

Кипение жидкости происходит при равенстве давления ее насыщенного пара давлению среды. В данном случае это давление в аппарате, в котором находится жидкость.  

Кипение жидкости зачастую характеризуется нерегулярным взрывным движением. Как это получается в соответствии со сказанным выше.  

Кипение жидкостей приводит к нарушению сплошности среды, поэтому значения параметров, при которых оно наступает, определяют границу применимости всех выводов, основанных на гипотезе сплошности.  

Кипение жидкостей также связано с поверхностными явлениями: при кипении происходит испарение жидкости внутрь воздушных пузырьков, которые имеются как в объеме самой жидкости, так и на границе со стенками сосуда. Рассмотрим механизм кипения; на рис. 2.47 показаны различные стадии развития воздушных пу зырьков, прикрепившихся к стенке сосуда. По мере испарения жидкости внутрь этих пузырьков давление пара в них повышается, внешнее и гидростатическое давления преодолеваются, и пузырек начинает расти вверх. При этом поверхностные силы, деформируя пузырек, отделяют от него некоторую часть, которая архимедовой силой поднимается вверх и освобождает содержащийся в ней пар на поверхности жидкости. Оставшаяся часть пузырька продолжает играть роль резервуара для накапливания пара и генератора новых пузырьков пара.  

Кипение жидкости происходит при постоянной температуре, которая зависит от давления. При кипении образуются пузыри пара, которые появляются на поверхности нагрева. Превышение средней температуры жидкости над температурой пара составляет Д / (0 2 - 2) С. Температура поверхности tf, омываемой кипящей жидкостью, может превышать среднюю температуру кипящей жидкости на несколько десятков градусов.  

ЛЕКЦИЯ 1.2.

Динамика материальной точки. Границы применимости классической механики. Как мы уже отмечали, кинематика дает описание движения тел без анализа причин, вызвавших это движение. Динамика изучает движение тел в связи с теми причинами (носящими характер взаимодействия между телами), которые обусловливают то или иной характер движения.

В основе так называемой классической или иначе ньютоновской механики лежат три закона динамики, сформулированные Ньютоном в 1687 г. Эти законы явились результатом обобщения большого количества опытных данных. Правильность законов подтверждается большим количеством подтвержденных на практике следствий из них, а также огромным количеством машин, механизмов и устройств, принцип работы которых базируется на этих законах.

Следует, однако, отметить, что имеются определенные ограничения на применение этих законов. Развитие теории относительности и ее специального раздела – релятивистской механики (механики больших скоростей), а также квантовой механики показало, что законы классической механики с достаточной для практики точностью описывают поведение объектов, если их размеры и масса значительно превосходят массы и размеры атомов, а скорость движения существенно меньше скорости света.

Первый закон Ньютона (другое название – закон инерции) формулируется следующим образом: всякое тело находится в состоянии покоя или прямолинейного равномерного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние .

Закон инерции выполняется не во всякой системе отсчета. Системы отсчета, в которых этот закон выполняется, называются инерциальными . Те системы отсчета, в которых первый закон Ньютона не выполняется, называются неинерциальными . Установленный Ньютоном закон инерции сам по себе подразумевает наличие в природе инерциальных систем отсчета. С достаточной для практики точностью инерциальной можно считать систему отсчета, центр которой совмещен с Солнцем. Такая система отсчета называется гелиоцентрической . Отметим также, что всякая система отсчета, движущаяся относительно некоторой инерциальной системы отсчета прямолинейно и равномерно, также является инерциальной.

Во многих задачах инерциальной может считаться система отсчета, связанная с поверхностью Земли. В то же время начало отсчета такой системы совершает вращательное движение, обусловленное суточным вращением Земли вокруг своей оси. Поэтому, строго говоря, такую систему отсчета нельзя считать инерциальной. Ускорение рассматриваемой системы отсчета будет в общем случае зависеть от радиуса планеты и географической широты, на которой расположено начало отсчета системы. Из рис. видно, что



,

где - радиус планеты, α – географическая широта.

Линейная скорость вращения начала отсчета (т. О)

,

где Т – период обращения планеты вокруг своей оси.

Связанное с суточным вращением нормальное ускорение т. О

.

Наличие нормального ускорения приводит к тому, что, например, полное ускорение тела, свободно падающего в такой системе отсчета, будет равно

а груз на нити (отвес) в состоянии покоя будет ориентирован строго говоря не перпендикулярно поверхности Земли. Однако при длительности земных суток 24 ч нормальное ускорение т. О даже при ее расположении на экваторе, т.е. когда , будет составлять

м/с 2 ,

что примерно в 288 раз меньше ускорения свободного падения. Поэтому во многих практически важных случаях наличием дополнительного центростремительного ускорения можно пренебречь, считая систему отсчета, связанную с поверхностью Земли инерциальной.

Сила. Принцип суперпозиции сил. В качестве меры механического воздействия одного тела на другое в механике вводится векторная величина, называемая силой . Механическое воздействие может осуществляться как между непосредственно контактирующими телами (например, при ударе), так и между удаленными телами. В последнем случае взаимодействие между телами осуществляется через особую форму материи – поле . Взаимодействие при этом распространяется в пространстве с конечной скоростью. Прямая, вдоль которой направлена сила, называется линией действия силы . Опыты показали, что механическое воздействие на тело N сил , приложенных в одной точке, равнозначно воздействию на тело одной силы F , являющейся векторной суммой этих сил:

Выражение (1) представляет собой математическую формулировку принципа суперпозиции сил .

Замечание : следует иметь в виду, что соотношение (1) выполняется строго только применительно к материальной точке. В случае, когда силы приложены к разным точкам тела, соотношение (1) перестает быть справедливым .

Свободные и несвободные тела. Связи. Реакции связей. Принцип освобождаемости. Тело называется свободным, если на его перемещения не наложено никаких ограничений. На практике в большинстве случаев тела нельзя считать свободными, так как на их движение и возможные положения наложены те или иные ограничения. Такие ограничения в механике называют связями . При изучении поведения отдельных несвободных тел или механических систем в механике пользуются принципом освобождаемости : несвободное тело (или систему тел) можно рассматривать как свободное, если заменить действие на него тел, осуществляющих связи, соответствующими силами . Эти силы называются реакциями связей .

Масса и импульс тела . Силовое воздействие на тело со стороны других тел вызывает изменение его скорости, т.е. сообщает данному телу ускорение. Опыт показывает, что одинаковое воздействие сообщает разным телам разные по величине ускорения. Кроме того, всякое тело сопротивляется попыткам изменить состояние его движения. Из опыта известно, что оказавшись под воздействием силы, тело изменяет направление и (или) скорость своего движения постепенно , проявляя таким образом свойство инертности . В качестве количественной меры инертности тела в физику была введена величина, называемая массой тела. Масса обладает свойством аддитивности , т.е. масса тела (механической системы) равна сумме масс его отдельных частей.

Предположим, что в результате кратковременного воздействия на тело (или материальную точку) силы F тело массой m приобрело скорость v .

Определение : импульсом тела (материальной точки) называется векторная величина, определяемая соотношением

Для импульса, как и для силы, выполняется принцип суперпозиции: если система состоит из N частей массами , двигающихся со скоростями , то результирующий импульс системы определяется выражением

. (3)

Второй закон Ньютона. Уравнение движения тела. Второй закон Ньютона гласит, что скорость изменения импульса тела равна действующей на тело силе :

Уравнение (4) называется уравнением движения тела . Заменив в (8) импульс соотношением (2), получим

Если предположить, что масса тела не изменяется с течением времени, то соотношение (5) приводится к виду

. (6)

Таким образом, формула (6) является частным случаем соотношения (5). Из (6) непосредственно следует, что движение тела с ускорением означает, что на тело действует сила . Справедливо и обратное утверждение.

Третий закон Ньютона. Всякое действие тел друг на друга носит характер взаимодействия. Если тело 1 действует на тело 2 с силой F 21 , то и тело 2 действует на первое тело с силой F 12 . Третий закон Ньютона утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению :

Из третьего закона Ньютона следует, что силы всегда возникают попрано: всякой силе приложенной к какому-либо телу можно сопоставить равную ей по величине и противоположную по направлению силу, приложенную к другому телу, взаимодействующему с данным телом.

Закон всемирного тяготения. Все тела в природе взаимно притягивают друг друга. Закон, которому подчиняется это притяжение был установлен Ньютоном и носит название закона всемирного тяготения . Согласно этому закону сила, с которой две материальные точки притягиваются друг к другу, прямо пропорциональна массам этих точек и обратно пропорциональна квадрату расстояния между ними :

Помимо материальных точек соотношение (8) справедливо так же и для шаров. Коэффициент пропорциональности , называется гравитационной постоянной. Направление действия силы проходит по прямой, соединяющей материальные точки. В случае притяжения двух тел конечных размеров закон всемирного тяготения дает сложное выражение для силы взаимодействия тел. Посмотрим на рис. 1, на котором представлены взаимодействующие тела. Разобьем тела на N достаточно малых частей. Сила гравитационного притяжения, действующая на элемент первого тела со стороны элемента второго тела может быть представлена в виде

.

Согласно принципу суперпозиции на элемент со стороны второго тела будет действовать сила

.

Просуммировав последнее выражение по i , найдем силу взаимодействия между телами

.

Сила тяжести и вес тела. Под действием силы притяжения Земли все тела падают на ее поверхность с одинаковым ускорением g . Согласно второму закону Ньютона это означает, что в системе отсчета, связанном с Землей на все тела действует сила

называемая силой тяжести . Пусть теперь тело покоится на горизонтальной опоре (см. рис. 2). В этом случае сила тяжести будет уравновешена силой реакции опоры N , действующей на тело со стороны опоры. Тогда по третьему закону Ньютона тело будет действовать на опору с силой G :

называемой весом тела . Следует иметь в виду, что, вообще говоря, вес тела может быть не равен силе тяжести (пример с лифтом).

Силы упругости. Мы уже отмечали, что часто используемое в механике понятие «абсолютно твердое тело» представляет собой математическую абстракцию. В действительности под действием приложенных к нему сил всякое тело деформируется. Различают упругую и неупругую деформации. Если после прекращения действия сил, тело восстанавливает свои размеры и форму, то такая деформация называется упругой.

Рассмотрим пружину, имеющую в недеформированном состоянии длину , и приложим к ее концам равные по величине и противоположные по направлению силы F 1 и F 2 (см. рис. 1). Под действием этих сил пружина растянется на величину . В состоянии равновесия внешние силы F 1 и F 2 будут уравновешены внутренними упругими силами, возникающими в пружине при ее деформации. Опытным путем установлено, что при небольших деформациях (в этом случае деформация упругая) удлинение пружины оказывается пропорциональным растягивающей силе :

Коэффициент пропорциональности k называется коэффициентом жесткости пружины. Соотношение (1) носит название закона Гука .

Силы трения. Силы трения возникают при перемещении соприкасающихся поверхностей друг относительно друга. Трение, возникающее при относительном перемещении двух соприкасающихся тел, называется внешним . Трение между частями одного и того же сплошного тела называется внутренним (например, трение в жидкостях или газах). Различают сухое и вязкое трение. Сухое трение – это трение между поверхностями двух твердых тел при отсутствии жидкой (газообразной) прослойки между ними. В случае наличия такой прослойки, а также в случае трения друг о друга слоев жидкости или газа, или в случае трения твердого тела о жидкость, говорят о вязком тернии. В сухом трении выделяют трение скольжения и трение качения .

Силы трения всегда направлены по касательной к трущимся поверхностям, причем так, что они противодействуют относительному перемещению поверхностей (см. рис.2).

Сухое трение . В случае сухого трения сила терния возникает не только при скольжении тел относительно друг друга, но и при попытке вызвать такое скольжение. В последнем случае говорят о том, что между телами действует сила трения покоя . Рассмотрим еще раз рис. 2. Пусть на тело 1 действует сила нормального давления N . Эта сила может быть обусловлена различными причинами, в частности весом тела. Приложим теперь к телу 1 силу F , направленную в горизонтальном направлении. Мы увидим, что для того, чтобы сдвинуть тело 1 с места придется увеличить силу F до некоторого значения . Пока тело 1 будет оставаться в покое. Согласно второму закону Ньютона это означает, что на тело будет действовать уравновешивающая силу F сила трения F тр. Причем до тех пор, пока тело 1 не сдвинется с места справедливо соотношение

Заметим, что по третьему закону Ньютона сила, равная по модулю , и противоположная ей по направлению будет действовать и на тело 2 (см. рис. 2).

После того, как тело 1 сдвинется с места, между ним и телом 2 будет действовать сила трения скольжения, величина которой, вообще говоря, будет зависеть от скорости перемещения тела 1 относительно тела 2, а также от природы и состояния соприкасающихся поверхностей. При специальной обработке поверхностей, возможно реализовать ситуацию, когда сила трения скольжения практически не будет зависеть от скорости.

Законы сухого терния сводятся к следующему: максимальная сила трения покоя и сила трения скольжения не зависят от площади соприкасающихся поверхностей и приблизительно пропорциональна силе нормального давления, прижимающей трущиеся поверхности друг к другу:

, (2)

где - коэффициент трения . График зависимости силы трения в этом случае представлен на рис. 3.

Вязкое трение и сопротивление среды. Как показывает опыт, сила вязкого терния, возникающая при перемещении слоев жидкости друг относительно друга, оказывается в существенной зависимости от скорости относительного движения слоев. В случае небольших скоростей с достаточной для практики точностью выполняется закон прямой пропорциональности между скоростью и силой вязкого трения:

где знак «-» означает, что сила трения, действующая на слой жидкости, всегда противоположна скорости движения этого слоя.

Кинематика дает математическое описание механического движения, не останавливаясь на физических причинах того, почему движение происходит именно таким образом. Динамика изучает механическое движение, вскрывая причины, придающие движению тот или иной характер. Основу динамики составляют законы Ньютона, которые по существу представляют собой обобщение большого числа опытных фактов и наблюдений.

§ 15. Инерция. Первый закон Ньютона

Объяснение причин механического движения в динамике основывается на использовании представлений о взаимодействии тел. Взаимодействие тел - это причина изменения скорости их движения, т. е. ускорения. Ускорение тела в данный момент времени определяется положением и движением окружающих тел.

Системы отсчета в динамике. В кинематике все системы отсчета равноправны и одинаково допустимы. В динамике естественно попытаться выбрать систему отсчета таким образом, чтобы механическое движение в ней выглядело наиболее просто. Следуя историческому опыту человечества, начнем рассуждения в системе отсчета, связанной с Землей.

Начиная с Аристотеля, на протяжении почти двадцати веков существовало предубеждение, что на Земле движение с постоянной скоростью нуждается для своего поддержания во внешнем воздействии, а при отсутствии такого воздействия движение прекращается, тело приходит в состояние покоя. Казалось бы, весь опыт наблюдений за происходящими вокруг нас движениями свидетельствует именно об этом.

Понадобился гений Галилея и Ньютона, чтобы увидеть истинную, совершенно иную картину мира и осознать, что объяснения требует не движение с постоянной скоростью, а изменение скорости. Состояние движения с постоянной скоростью эквивалентно состоянию покоя в том смысле, что, как и покой, оно является естественным, не требующим никакого «объяснения», никакой причины. Иными словами, в состоянии покоя нет ничего исключительного. О том, насколько труден был этот шаг, можно судить хотя бы по тому

факту, что Галилей сделал его лишь наполовину: он считал, что прямолинейное движение сохраняется только в земных масштабах, а для небесных тел «естественным», сохраняющимся движением является круговое.

Движение по инерции. Движение тела, происходящее без внешних воздействий, принято называть движением по инерции. В земных условиях такие движения практически не встречаются. К представлению о движении по инерции можно прийти в результате экстраполяции к идеализированным условиям. Представим себе, например, скольжение льдинки по горизонтальной поверхности. Если эта поверхность шероховатая, как асфальт, запущенная по ней льдинка довольно быстро остановится. Но в гололед, когда поверхность асфальта покрыта тонким слоем льда, скольжение льдинки будет продолжаться гораздо дольше. Можно думать, что в предельном случае идеально гладкой поверхности такое движение продолжалось бы неограниченно долго.

В школьном кабинете физики почти идеальные условия движения по инерции можно осуществить с помощью «воздушной дорожки», где трение о поверхность почти отсутствует (рис. 61).

Рис. 61. Дорожка с воздушной подушкой, обеспечивающей движение с очень малым ускорением

Выходящий из маленьких отверстий сжатый воздух создает «воздушную подушку», поддерживающую тележку-бегунок, и после легкого толчка тележка долго движется с неизменной по модулю скоростью, упруго отражаясь от концов дорожки с помощью пружинных бамперов. Таким образом, создается впечатление, что в отсутствие внешних воздействий тело сохраняет состояние покоя или движения с постоянной скоростью.

Посмотрим теперь, что получится, если опыт с воздушной дорожкой проделать в вагоне движущегося поезда. Оказывается, что при равномерном прямолинейном движении поезда относительно Земли все происходит точно так же, как и в кабинете физики. Однако при разгоне поезда, торможении, движении по закруглению и при тряске на неровностях пути все происходит иначе.

Например, при трогании поезда с места тележка на установленной вдоль вагона дорожке сама приходит в движение относительно вагона в противоположную сторону. Тем не менее для наблюдателя, стоящего на платформе, тележка как была, так и останется на месте, просто дорожка под ней придет в движение вместе с вагоном. При торможении поезда стоявшая неподвижно на воздушной дорожке тележка устремится вперед. Однако для наблюдателя на платформе при торможении поезда тележка продолжает двигаться прямолинейно и равномерно с прежней скоростью. И так далее.

Какой же вывод отсюда следует? Очевидно, что связанная с равномерно и прямолинейно движущимся поездом система отсчета столь же удобна, как и связанная с Землей. Как в той, так и в другой системе отсчета тело в отсутствие внешних взаимодействий либо покоится, либо движется с постоянной скоростью. При ускоренном движении системы отсчета тело уже не сохраняет состояния покоя или равномерного движения. Скорость тела изменяется даже тогда, когда на него не действуют другие тела, т. е. «беспричинно».

Инерциальные системы отсчета. Таким образом, в динамике пропадает равноправие, эквивалентность всех систем отсчета. В произвольной системе отсчета изменение скорости тела может происходить без взаимодействия с другими телами. Системы отсчета, в которых тело, не взаимодействующее с другими телами, сохраняет состояние покоя или равномерного прямолинейного движения, называются инерциальными. В рассмотренных примерах система отсчета, связанная с Землей, и система отсчета, связанная с равномерно и прямолинейно движущимся поездом, могут приближенно считаться инерциальными, в отличие от системы отсчета, связанной с ускоренно движущимся поездом.

Итак, введение инерциальной системы отсчета основано на использовании представления о свободном теле. Но как можно убедиться в том, что тело действительно свободно, т. е. не взаимодействует ни с какими другими телами? Все известные в физике взаимодействия между макроскопическими телами, например такие, как силы тяготения или силы электромагнитного взаимодействия, убывают с увеличением расстояния. Поэтому можно считать, что тело, достаточно удаленное от других тел, практически не испытывает воздействия с их стороны, т. е. является свободным. Реально, как мы видели, условия свободного движения могут выполняться лишь приближенно, с большей или меньшей точностью. Отсюда ясно, что невозможно осуществить такой опыт, который можно было бы считать прямым строгим доказательством существования инерциальных систем отсчета.

Геоцентрическая и гелиоцентрическая системы отсчета. Какие же системы отсчета можно считать инерциальными? Во многих

практически важных случаях инерциальной можно считать систему отсчета, связанную с Землей, - так называемую геоцентрическую систему отсчета. Но строго инерциальной она не является, о чем свидетельствуют хорошо известные опыты с маятником Фуко и с отклонением свободно падающих тел от вертикали. С гораздо большей степенью точности можно считать инерциальной гелиоцентрическую систему отсчета, связанную с Солнцем и «неподвижными» звездами. Любая система отсчета, которая движется относительно инерциальной с постоянной по модулю и направлению скоростью, тоже является инерциальной. Система отсчета, движущаяся относительно гелиоцентрической с ускорением, в частности вращающаяся, уже не будет инерциальной. Неинерциальность геоцентрической системы отсчета связана главным образом с суточным вращением Земли вокруг своей оси.

Первый закон Ньютона. Сформулированные выше положения и составляют содержание первого закона Ньютона в его современном понимании:

Существуют такие системы отсчета, в которых тело, не взаимодействующее с другими телами, сохраняет состояние покоя или равномерного прямолинейного движения. Такие системы отсчета называются инерциальными.

Утверждение о существовании инерциальных систем отсчета, составляющее содержание первого закона Ньютона, представляет собой экстраполяцию результатов реальных опытов на идеализированный случай полного отсутствия взаимодействия рассматриваемого тела с другими телами. Отметим, что первый закон Ньютона, постулируя существование инерциальных систем отсчета, тем не менее ничего не говорит о физических причинах, выделяющих инерциальные системы среди всех других систем отсчета.

Свободное тело. При обсуждении инерциальных систем отсчета и первого закона Ньютона было использовано представление о свободном теле. Строго говоря, при этом пренебрегалось размерами тела и фактически имелась в виду свободная материальная точка. Поэтому, применительно к реальным телам, все сказанное выше справедливо для таких движений, характер которых не зависит от размеров и формы тел. Другими словами, мы ограничиваемся только случаями, когда движение тела можно рассматривать как поступательное. Здесь можно не различать скоростей различных точек протяженного тела и говорить о скорости тела как целого. То же самое, справедливо и для ускорений различных точек протяженного тела.

Свободное протяженное тело в инерциальной системе отсчета может находиться в состоянии равномерного вращения по инерции. Например, могут вращаться вокруг своей оси звезды, удаленные от других небесных тел. Вращается и наше Солнце. При

таком вращении не лежащие на оси точки тела движутся с ускорением. Это ускорение обусловлено взаимодействием между различными частями протяженного тела, т. е. внутренними силами. Однако в целом такое протяженное свободное тело в инерциальной системе отсчета может только покоиться или двигаться прямолинейно и равномерно.

В каком смысле состояние покоя и состояние равномерного прямолинейного движения тела эквивалентны?

Какое движение называют движением по инерции? Можно ли практически осуществить такое движение?

Каким образом можно убедиться в том, что данное тело не взаимодействует с другими телами?

Что такое инерциальная система отсчета? Приведите примеры инерциальных систем отсчета.

Чем объясняется ускорение разных точек протяженного тела, совершающего вращение по инерции?

Инерциальные системы и опыт. Введение понятия об инерциальных системах отсчета наталкивается на определенные логические трудности. Суть их можно уяснить из следующих рассуждений.

Что такое инерциальная система отсчета? Это система, относительно которой исследуемое тело движется равномерно и прямолинейно либо покоится, если оно не взаимодействует с другими телами. Но что значит - тело не взаимодействует ни с какими другими телами? Это просто означает, что тело движется прямолинейно и равномерно в инерциальной системе отсчета. Налицо порочный круг. Чтобы вырваться из него, нужно иметь независимую возможность убедиться в отсутствии взаимодействия.

Как уже упоминалось, все известные взаимодействия макроскопических тел убывают с увеличением расстояния между ними. Но в действительности нельзя быть уверенными в отсутствии взаимодействия только потому, что никакие другие тела не соприкасаются или не находятся очень близко к данному телу. Гравитационные или электромагнитные силы могут играть важную роль даже тогда, когда близко от данного тела нет других тел, так как эти силы недостаточно быстро убывают с расстоянием. Поэтому установление факта отсутствия взаимодействия на основе пространственного удаления тел имеет приближенный характер. И хотя на практике всегда можно установить таким способом существование свободных тел и инерциальных систем отсчета с любой требуемой точностью, в принципиальном отношении вопрос остается открытым. В этом смысле не существует «решающего» опыта, который можно было бы рассматривать в

качестве экспериментального доказательства справедливости первого закона Ньютона.

Чтобы на опыте убедиться в том, что выбранная система отсчета инерциальна, нужно иметь свободное тело. Каким образом можно установить, что некоторое тело является свободным, т. е. не взаимодействует с другими телами?

В качестве первого закона Ньютон взял принцип инерции Галилея (1632 год) и дополнил его понятием инерциальной системы отсчета. Согласно принципу инерции Галилея свободное тело сохраняет состояние, покоя или равномерного, прямолинейного движения пока воздействие других тел не выведет его из этого состояния.

Из этого принципа следует, что состояние покоя или равномерного прямолинейного движения не требует для своего поддержания каких-либо внешних воздействий. В этом проявляется особое динамическое свойство тел, называемое инерцией . Поэтому первый закон Ньютона называют законом инерции, а движение тела в отсутствие воздействий со стороны других тел - движением по инерции.

Первый закон Ньютона выполняется не во всех системах отсчета. Те системы, в которых он выполняется, называются инерциальными системами отсчета.

Экспериментально установлено, что практически инерциальной системой отсчета является гелиоцентрическая система отсчета, начало координат которой находится в центре Солнца, а оси проведены в направлении трех удаленных звезд, выбранных, например, так, чтобы они были взаимно перпендикулярны.

Для многих практических целей при движении макроскопических тел в качестве системы отсчета используется система, связанная с Землей. Такая система отсчета считается приближенно инерциальной из-за влияния суточного и годового вращения Земли.

Таким образом, можно дать следующую формулировку первого закона Ньютона: существуют такие системы отсчета, в которых тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие других тел не выведет его из этого состояния.

Покажем, что любая система от­счета, которая движется равномерно и прямолинейно относительно инерциальной системы, также является инерциальной. Пусть тело А покоится в инерциальной системе отсчета К (рис. 3.1). Система отсчета К" движется относительно системы К равномерно и прямолинейно со скоростью. Тело А относительно системы К" движется равномерно и прямолинейно со скоростью -, что также удовлетворяет первому закону Ньютона. Следовательно, система отсчета К" является инерциальной. Таким образом, по известной одной инерциальной системе отсчета можно описанным выше способом построить их сколько угодно.

3.1.2. Второй закон Ньютона

Этот закон является основным законом динамики материальной точки и твердого тела, движущегося поступательно.

Закон устанавливает связь между силой, массой и ускорением.

Опыт показывает, что всякое изменение величины или направления скорости движения тела вызывается его взаимодействием с другими телами.

В механике сила определятся как количественная мера взаимодействия тел, которое приводит к изменению их скорости или деформации.

Сила характеризуется величиной, направлением и точкой приложения. Следовательно, сила является векторной величиной.

По современным представлениям, основанным на опыте, все наблюдаемые в природе взаимодействия могут быть сведены к четырем фундаментальным: гравитационному, слабому, электромагнитному и сильному.

Гравитационное взаимодействие присуще всем материальным объектам. Оно определяется наличием у материальных тел массы и подчиняется закону всемирного тяготения Ньютона. Радиус действия гравитационного взаимодействия неограничен. В области микромира роль гравитационного взаимодействия ничтожно мала.

Слабое взаимодействие - короткодействующее, существует в микромире и проявляется в том, что приводит к определенному виду нестабильности элементарных частиц.

Электромагнитное взаимодействие проявляется при взаимодействии токов и зарядов. Радиус действия электромагнитного взаимодействия неограничен. Оно является определяющим в образовании атомов, молекул и макроскопических тел.

Ядерное или сильное взаимодействие является самым интенсивным. Радиус сильного взаимодействия очень мал ~10 -15 м. Благодаря этому взаимодействию протоны и нейтроны удерживаются в ядрах, несмотря на сильное отталкивание протонов.

К нефундаментальным силам относятся силы упругости, трения, сопротивления и другие. Все эти силы могут быть сведены к электромагнитным или гравитационным, однако, это приводит к существенному усложнению решения задач механики. По этой причине в механике силы упругости и трения рассматривают наряду с фундаментальными.

Опытным путем установлено еще одно важное свойство сил, проявляющееся при механическом взаимодействии. Силы в механике подчиняются принципу суперпозиции , который заключается в следующем: одновременное взаимодействие частицы М с несколькими другими n частицами с силами
эквивалентно действию одной силы, равной их векторной сумме.

. (3.1)

Силу называют равнодействующей.

Как показывает опыт, все тела обладают свойством препятствовать изменению величины и направления скорости. Это свойство называется инертностью.

Массу можно определить двумя способами. Первый из них состоит в следующем. Выбирается эталонное тело, масса которого m эт принимается за единицу массы. Масса m исследуемого тела определяется из следующего соотношения, установленного опытным путем:

,

где а и а эт - ускорения, вызываемые действием одной и той же силы на эталонное и исследуемое тела. При этом определяется так называемая инертная масса.

Второй способ основан на использовании закона всемирного тяготения. При этом определяется так называемая гравитационная масса.

А. Эйнштейн сформулировал принцип эквивалентности гравитационной и инертной массы: инертная и гравитационная массы одного и того же тела одинаковы.

Эквивалентность инертной и гравитационной масс позволяет выбрать для них одну единицу измерения. В качестве единицы массы в системе СИ принят килограмм (кг) - масса эталонного платиново-иридиевого тела, хранящегося во Франции в международном бюро мер и весов.

Динамическое воздействие движущегося тела на другие тела зависит от скорости и массы. Поэтому в качестве динамической характеристики интенсивности движения вводится векторная величина , называемая импульсом (или количеством движения) тела и равная произведению его массы на скорость:

. (3.2)

Единица импульса килограмм-метр, деленный на секунду (кг·м/с).

Согласно второму закону Ньютона, производная по времени от импульса тела равна равнодействующей всех приложенных к нему сил:

. (3.3)

Из (3.3) следует, что изменение импульса происходит в направлении равнодействующей силы . Отметим, что второй закон Ньютона в форме (3.3) допускает описание движения тела с переменной массой. Если масса тела постоянна, то из (3.2) и (3.3) получаем уравнение второго закона Ньютона в виде

, (3.4)

откуда с учетом формулы (2.21) получаем:

. (3.5)

Единица силы в СИ является производной единицей, определение которой основано на формуле (3.5). Единица силы - 1 Ньютон (Н), это такая сила, которая телу с массой 1 кг сообщает ускорение 1м / с 2 .

Второй закон Ньютона часто называют основным законом динамики поступательного движения. С помощью этого закона в механике решаются две основные задачи:

1. Прямая основная задача - установление дифференциальных уравнений движения тела (точки) и их решение.

2. Обратная основная задача - нахождение зависимости сил взаимодействия тел от их координат, скоростей и времени, то есть установление законов взаимодействия.