Чем обусловлена потенциальная энергия. Как вычисляется формула кинетической и потенциальной энергии

Введение

1. История открытия фотоэффекта

2. Законы Столетова

3. Уравнение Эйнштейна

4. Внутренний фотоэффект

5. Применение явления фотоэффекта

Список литературы


Введение

Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других – корпускулярные.

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический эффект , то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

1. История открытия фотоэффекта

Открытие фотоэффекта следует отнести к 1887 г., когда Герц обнаружил, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между ними.

Явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 1).

Величина искрового промежутка F подбирается таким образом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один – два раза в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденсатора значительно облегчается: искра начинает проскакивать Рис. 1. Схема опыта Герца.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза – если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантовых порций. Из представления о свете как о частицах (фотонах) немедленно следует формула Эйнштейна для фотоэффекта:

, – кинетическая энергия вылетающего электрона, – работа выхода для данного вещества, – частота падающего света, – постоянная Планка, которая оказалась ровно той же, что и в формуле Планка для излучения абсолютно чёрного тела.

Из этой формулы следует существование красной границы фотоэффекта. Таким образом, исследования фотоэффекта были одними из самых первых квантово – механических исследований.

2. Законы Столетова

Впервые (1888–1890), подробно анализируя явление фотоэффекта, русский физик А.Г. Столетов получил принципиально важные результаты. В отличие от предыдущих исследователей он брал малую разность потенциалов между электродами. Схема опыта Столетова представлена на рис. 2.

Два электрода (один в виде сетки, другой – плоский), находящиеся в вакууме, присоединены к батарее. Включенный в цепь амперметр служит для измерения возникающей силы тока. Облучая катод светом различных длин волн, Столетов пришел к выводу, что наиболее эффективное действие оказывают ультрафиолетовые лучи. Кроме того, было установлено, что сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

В 1898 г. Ленард и Томсон методом отклонения зарядов в электрическом и магнитном полях определили удельный заряд заряженных частиц, вырываемых Рис. 2. Схема опыта Столетова.

светом из катода, и получили выражение

СГСЕ ед. з/г, совпадающее с известным удельным зарядом электрона. Отсюда следовало, что под действием света происходит вырывание электронов из вещества катода.

Путем обобщения полученных результатов были установлены следующие закономерности фотоэффекта:

1. При неизменном спектральном составе света сила фототока насыщения прямо пропорциональна падающему на катод световому потоку.

2. Начальная кинетическая энергия вырванных светом электронов линейно растет с ростом частоты света и не зависит от его интенсивности.

3. Фотоэффект не возникает, если частота света меньше некоторой характерной для каждого металла величины

, называемой красной границей.

Первую закономерность фотоэффекта, а также возникновение самого фотоэффекта легко объяснить, исходя из законов классической физики. Действительно, световое поле, воздействуя на электроны внутри металла, возбуждает их колебания. Амплитуда вынужденных колебаний может достичь такого значения, при котором электроны покидают металл; тогда и наблюдается фотоэффект.

Ввиду того, что согласно классической теории интенсивность света прямо пропорциональна квадрату электрического вектора, число вырванных электронов растет с увеличением интенсивности света.

Вторая и третья закономерности фотоэффекта законами классической физики не объясняются.

Изучая зависимость фототока (рис. 3), возникающего при облучении металла потоком монохроматического света, от разности потенциалов между электродами (такая зависимость обычно называется вольт – амперной характеристикой фототока), установили, что: 1) фототок возникает не только при

, но и при ; 2) фототок отличен от нуля до строго определенного для данного металла отрицательного значения разности потенциалов , так называемого задерживающего потенциала; 3) величина запирающего (задерживающего) потенциала не зависит от интенсивности падающего света; 4) фототок растет с уменьшением абсолютного значения задерживающего потенциала; 5) величина фототока растет с ростом и с какого-то определенного значения фототок (так называемый ток насыщения) становится постоянным; 6) величина тока насыщения растет с увеличением интенсивности падающего света; 7) величина задерживающего Рис. 3. Характеристика

потенциала зависит от частоты падающего света; фототока.

8) скорость вырванных под действием света электронов не зависит от интенсивности света, а зависит только от его частоты.


3. Уравнение Эйнштейна

Явление фотоэффекта и все его закономерности хорошо объясняются с помощью квантовой теории света, что подтверждает квантовую природу света.

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых.

ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

ФОТОЭФФЕКТ - явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

ФОТОЭФФЕКТ - испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия

фотоэффект - сущ., кол во синонимов: 2 фото эффект (1) эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фотоэффект - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика

ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

фотоэффект - а; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

Фотоэффект - испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия

фотоэффект - (см. фото... + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка

Книги

  • , П.С. Тартаковский. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство`ГИТТЛ`). В… Купить за 2220 грн (только Украина)
  • Внутренний фотоэффект в диэлектриках , П.С. Тартаковский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство "ГИТТЛ"…

Внешний фотоэффект

Внешним фотоэлектрическим эффектом (фотоэффектом) называется процесс испускания электронов веществом при поглощении им квантов электромагнитного излучения (фотонов). Внешний фотоэффект был открыт в 1887 г. Г.Герцем, который обнаружил, что искровой разряд между двумя металлическими шариками происходит значительно интенсивнее, если один из шариков освещать ультрафиолетовыми лучами. После открытия электрона измерение удельного заряда вылетающих из металла под действием излучения частиц позволило установить, что частицы являются электронами.

Детальное экспериментальное исследование закономерностей внешнего фотоэффекта для металлов было выполнено в 1888 – 1889 гг. А.Г.Столетовым на установке с фотоэлементом, схема которой приведена на рисунке. Фотоэлемент в виде вакуумной двухэлектродной лампы имеет металлический катод К , который при освещении его через кварцевое окошко видимым светом или ультрафиолетовым излучением испускает электроны. Вылетевшие из катода фотоэлектроны, достигая анода А , обеспечивают протекание в цепи электрического тока, который фиксируется гальванометром или миллиамперметром. Специальная схема подключения источника позволяет изменять полярность напряжения, подаваемого на фотоэлемент.

На следующем рисунке представлена зависимость фототока от напряжения между катодом и анодом (вольт-амперные характеристики) при падении на катод монохроматического света с длиной волны при неизменном световом потоке для двух значений светового потока ( > ). Из вольт-амперной характеристики видно, что при некотором положительном напряжении фототок достигает насыщения – все электроны, испущенные катодом, достигают анода. Ток насыщения определяется числом электронов, испускаемых катодом в единицу времени под действием света. Из рисунка видно, что число электронов, вылетающих из катода при данной частоте падающего света зависит от светового потока ( > ) так как ( > ). При напряжении фототок не исчезает, это свидетельствует о том, что электроны покидают катод со скоростью, отличной от нуля, т.е. обладают кинетической энергией, достаточной для достижения анода. При отрицательном напряжении испущенный катодом электрон попадает в тормозящее электрическое поле, преодолеть которое он может, лишь имея определенный запас кинетической энергии. Электрон с малой кинетической энергией, вылетев из катода, не может преодолеть тормозящее поле и попасть на анод. Такой электрон возвращается на катод, не давая вклада в фототок. Поэтому, плавный спад фототока в области отрицательных напряжений указывает на то, что вылетающие из катода фотоэлектроны имеют разные значения кинетической энергии. При некотором отрицательном напряжении , величину которого называют задерживающим напряжением (потенциалом), фототок становится равным нулю. При таком напряжении ни одному из электронов не удается преодолеть задерживающее поле и долететь до анода. Соответствующее тормозящее электрическое поле при этом задерживает все вылетающие из катода электроны, включая электроны с максимальной кинетической энергией.

Измерив задерживающее напряжение, можно определить эту максимальную энергию или максимальную скорость фотоэлектронов из соотношения

, (6.41.1)

где – масса электрона, – заряд электрона, – максимальная скорость вылетевших электронов.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов (следовательно и ) линейно возрастает с увеличением частоты света ν и не зависит от светового потока (см. рисунок, приведенный ниже).

2. Для каждого вещества существует так называемая красная граница фотоэффекта , то есть наименьшая частота , при которой еще возможен внешний фотоэффект.

3. При неизменном спектральном составе падающего на катод света число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально световому потоку :

Это утверждение носит название закона Столетова.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Попытки объяснить закономерности фотоэффекта с использованием классической волновой теории, в которой излучение рассматривалось как электромагнитные волны, приводили к выводам, противоположным наблюдаемым в эксперименте. Действительно, объясняя вырывание электронов из металла силовым воздействием на них со стороны электрического поля волны, такая теория неизбежно приходила к выводу о том, что максимальная кинетическая энергия фотоэлектронов должна определяться световым потоком, падающим на катод. Наличие красной границы у фотоэффекта также противоречило выводам волновой теории.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе развития гипотезы М. Планка о том, что электромагнитное излучение испускается в виде отдельных порций – квантов, энергия которых зависит от частоты. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру: свет не только испускается, но и распространяется и взаимодействует с веществом в виде отдельных порций.

Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Если электрон находится на самой поверхности, Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

(6.41.3)

Таким образом, энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии По закону сохранения энергии

(6.41.4)

Выражение (6.41.4) называется формулой (уравнением) Эйнштейна для внешнего фотоэффекта. С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Если энергия падающих фотонов < , то фотоэффект не наблюдается. Отсюда частота и длина волны красной границы фотоэффекта определяются слеющими формулами:



(6.41.5)

Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Важной количественной характеристикой фотоэффекта является квантовый выход, определяющий число вылетевших электронов, приходящихся на один падающий на металл фотон. Вблизи красной границы для большинства металлов квантовый выход составляет порядка 10 -4 электрон/фотон. Малость квантового выхода обусловлена тем, что энергию, достаточную для выхода из металла сохраняют только те электроны, которые получили энергию от фотонов на глубине от поверхности, не превышающей 0,1 мкм. Кроме того, поверхность металлов сильно отражает излучение. С увеличением энергии фотонов, то есть с уменьшением длины волны излучения квантовый выход увеличивается, составляя 0,01 – 0,05 электрон/фотон для энергии фотонов порядка одного электрон-вольта. Для рентгеновского излучения с энергией фотонов эВ уже практически на каждые десять падающих на поверхность фотонов приходится один вылетевший из металла электрон.

Как бы ни был среднестатистический человек далёк в своей повседневной жизни от пройденной некогда школьной программы, она нет-нет да и заставит о себе вспомнить. Именно так происходит, когда речь заходит о явлении внешнего фотоэффекта.

Определение

Фотоэффектом в физике принято считать процесс выравнивания электронов в атомах, молекулах вещества, который возникает и происходит под воздействием света. А внешний фотоэффект - процесс, при котором электроны выбиваются светом с такой силой, что вылетают за внешние пределы своего вещества.

Немного истории и практики

Впервые на этот удивительный факт обратил внимание учёный-физик из Германии в далёком 1887-м году. Изучение открытия было продолжено коллегой Герца, русским физиком Столетовым. А гениальный Эйнштейн разработал теорию фотоэффекта на основе идей С тех пор внешний фотоэффект изучен достаточно глубоко и разносторонне, а полученные знания применяются в полном объёме при разработке и производстве приборов на основе фотоэлементов. Если брать самый элементарный пример, то это автоматические работающие на фотоэлементах.

Механизмы такого типа работают на Однако фотоэлементы, которые используют только внешний фотоэффект, трансформируют энергию, получаемую при излучении, в электрическую не полностью. Поэтому применять их в качестве источников электроэнергии особого смысла нет, чего не скажешь об автоматике. Именно при помощи световых пучков происходит управление электроцепями в автоматических механизмах.

Без преувеличения можно утверждать, что открытие фотоэффекта стало поистине революционным событием в физике. Вот самые значимые его последствия:

  • перед учёными приоткрылась тайна природы света, светового луча;
  • кино из немого стало «говорящим», были придуманы способы озвучки, да и сам факт передачи движущегося изображения тоже стал возможен благодаря фотоэффекту;
  • создание на основе фотоэлектронных приборов таких станков и «умных машин», которые по заданным параметрам без участия человека изготавливают различные детали;
  • множество различных механизмов, основанных на работе фотоэлектронной автоматики.

Таким образом, сам фотоэффект и его применение стали своего рода прорывом в современной технике.

Классификация фотоэлементов

Фотоэффекты делятся на несколько видов в зависимости от своих свойств и выполняемых функций.

  1. Внешний фотоэффект (по-другому - фотоэлектронная эмиссия). Электроны, которые вылетают за пределы вещества при его возникновении, получили название фотоэлектронов. А который они образуют, когда упорядоченно движутся по внешнему электрическому полю, стал называться фототоком.
  2. Внутренний фотоэффект, влияющий на фотопроводимость вещества. Он возникает, когда электроны перераспределяются по полупроводникам и диэлектрикам в зависимости от их энергетического состояния и агрегатного - твёрдого или жидкого. Явление перераспределения происходит под влиянием света. Именно тогда увеличивается электропроводность вещества, т.е. получается эффект фотопроводимости.
  3. Вентильный фотоэффект - переход фотоэлектронов из своих тел в другие твёрдые тела (полупроводники) или жидкие (электролиты).

Внешний фотоэффект лежит в основе работы современных вакуумных фотоэлементов. Они изготавливаются в виде стеклянных колб, у которых внутренняя поверхность частично покрывается тонким слоем металлического напыления. Незначительная толщина слоя обеспечивает малый рабочий выход. Прозрачное окошко колбы пропускает внутрь свет, а находящийся внутри неё анод в виде проволочной петли или диска улавливает фотоэлектроны. Если анод соединить с положительным полюсом батареи, цепь замкнётся, по ней пойдёт электрический ток. Т.е. вакуумные фотоэлементы могут включать или выключать реле.

Комбинируя фотоэлементы и реле, можно создать различные «видящие» автоматы, к примеру, автомат в метро.

Итак, будучи заложен в основу многих производственных процессов, внешний фотоэффект как великое физическое открытие стал залогом успешной работы промышленной автоматики.

Называется совокупность методов измерения температуры тел, основанных на законах теплового излучения. Приборы, применяемые для этого, называются пирометрами.

Эти методы очень удобны для измерения температур различных объектов, где сложно или вообще невозможно применить традиционные контактные датчики. Это относится в первую очередь к измерению высоких температур.

В оптической пирометрии различают следующие температуры тела: радиационную (когда измерение проводится в широком интервале длин волн), цветовую (когда в узком интервале - интервале видимого света), яркостную (на одной длине волны).

1. Радиационная температура Т р - это температура абсолютно чёрного тела, при которой его энергетическая светимость R равна энергетической светимости R m данного тела в широком диапазоне длин волн.

Если же измерить мощность, излучаемую некоторым телом с единицы поверхности в достаточно широком интервале волн и ее величинусопоставить с энергетической светимостью абсолютно черного тела, то можно, используя формулу (11), вычислить температуру этого тела, как

Определенная таким способом температура T p будет достаточно точно соответствовать истинной температуре T только в том случае, если исследуемое тело - абсолютно черное.

Для серого тела закон Стефана-Больцмана может быть записан в виде

R m (T) = α T σT 4 ; где α T < 1.

Подставляя данное выражение в формулу (1) получаем

Для серого тела значение радиационной температуры оказывается заниженным (T p < T ), т.е. истинная температура серого тела всегда выше радиационной.

2. Цветовая температура Т ц - это температура абсолютно чёрного тела, при которой относительные распределения спектральной плотности энергетической светимости этого тела и рассматриваемого тела максимально близки в видимой области спектра.

Обычно для определения цветовой температуры выбирают длины волн λ 1 = 655 нм (красный цвет), λ 2 = 470 нм (зелено-голубой цвет). Спектральная плотность энергетической светимости серых тел (или тел близких к ним по свойствам) с точностью до постоянного коэффициента (коэффициента монохроматического поглощения) пропорциональна спектральная плотность энергетической светимости абсолютно черного тела. Следовательно, распределение энергии в спектре серого тела такое же, как и в спектре абсолютно черного тела при той же температуре.

Для определения температуры серого тела достаточно измерить мощность I (λ,Т) , излучаемую единицей поверхности тела в достаточно узком спектральном интервале (пропорциональную r (λ,Т) ), для двух различных волн. Отношение I (λ,Т) для двух длин волн равно отношению зависимостей f (λ,Т) для этих волн, вид которых дается формулой (2) предыдущего параграфа:


(2)

Из данного равенства можно математическим путем получить температуру Т . Полученная таким образом температура называется цветовой. Цветовая температура тела, определенная по формуле (2), будет соответствовать истинной.

Цветовую температуру серого тела, совпадающую с истинной, можно также найти из закона смещения Вина.

3. Яркостная температура (Т я) некоторого тела называется температура абсолютно чёрного тела, при которой его спектральная плотность энергетической светимости f (λ,T), для какой либо определённой длины волны, равна спектральной плотности, энергетической светимости r (λ,Т) данного тела для той же длины волны.

Так как для нечерного тела спектральная плотность энергетической светимости при определенной температуре будет всегда ниже чем у абсолютно черного тела, то истинная температура тела будет всегда выше яркостной.

В качестве яркостного пирометра используется пирометр с исчезающей нитью . Принцип определения температуры основан на визуальномсравнении яркости раскаленной нити лампы пирометра с яркостью изображения исследуемого объекта. Равенство яркостей, наблюдаемое через монохроматический светофильтр (обычно измерения проводят на длине волны λ = 660 нм), определяется по исчезновению изображения нити пирометрической лампы на фоне изображения раскаленного объекта. Накал нити лампы пирометра регулируется реостатом, а температура нити определяется по градуировочному графику, или таблице.

Пусть мы в результате измерений получили равенство яркостей нити пирометра и исследуемого объекта и по графику определилитемпературу нити пирометра Т 1 . Тогда,на основании формулы (3) можно записать:

f (λ,T 1) α 1 (λ,T 1) = f (λ ,T 2) α 2 (λ, T 2) ,

где α 1 (λ,T 1) и α 2 (λ,T 2) коэффициенты монохроматического поглощения материала нити пирометра и исследуемого объекта соответственно. T 1 и T 2 - температуры нити пирометра и объекта. Как видноиз данной формулы, равенство температур объекта и нити пирометра будут наблюдаться только тогда, когда будут, равны их коэффициенты монохроматического поглощения в наблюдаемой области спектра α 1 (λ,T 1) = α 2 (λ,T 2) . Если α 1 (λ,T 1) > α 2 (λ,T 2) , мы получим заниженное значение температуры объекта, при обратном соотношении - завышенное значение температуры.

Внешним фотоэффектом называется явление испускания электронов веществом под действием электромагнитного излучения. Внутренним фотоэффектом называется явление появление свободных электронов в веществе (полупроводниках) под действием электромагнитного излучения Связанные (или валентные) электроны становятся свободными (в пределах вещества). В результате уменьшается сопротивление вещества.

Законы внешнего фотоэффекта :

1. При неизменном спектральном составе излучения сила тока насыщения (или число фотоэлектронов, испускаемых катодом за единицу времени) прямо пропорциональна падающему на фотокатод потоку излучения (интенсивности излучения).

2. Для данного фотокатода максимальная начальная скорость фотоэлектронов, а, следовательно, их максимальная кинетическая энергия определяется частотой излучения и не зависит от его интенсивности.

3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота излучения ν 0 , при которой еще возможен внешний фотоэффект. Отметим, что значение ν 0 зависит от материала фотокатода и состояния его поверхности.

Объяснение внешнего фотоэффекта с точки зрения волновой теории света противоречило экспериментальным данным. Согласно волновой теории под действием поля электромагнитной волны в металле возникают вынужденные колебания электронов в атоме с амплитудой тем большей, чем больше амплитуда вектора напряженности электрического поля волны E o (и, следовательно, интенсивность света I~E o 2).

В результате этого электроны могут покидать металл и выходить из него, т.е. может наблюдаться внешний фотоэффект. Тем выше должна быть и скорость вылетевших электронов, т.е. кинетическая энергия фотоэлектронов должна зависеть от интенсивности излучения, что противоречит опытным данным. По этой теории излучение любой частоты, но достаточно большой интенсивности должно вырывать электроны из металла, т.е. красной границы фотоэффекта не должно быть.

А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе квантовой теории М. Планка . Согласно Эйнштейну, свет (излучение) частотой ν не только испускается, как это предполагал М. Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых

E o = hν , (1)

где h = 6,626176*10 -34 Дж × с - постоянная Планка,

Позднее кванты излучения получили название фотонов . По Эйнштейну, каждый квант поглощается только одним электроном. Если энергия кванта больше чем работа выхода электрона из металла, т.е. hν >= А вых, то электрон может покинуть поверхность металла. Остаток энергии кванта идет на создание кинетической энергии электрона, покинувшего вещество. Если электрон освобождается излучением не у самой поверхности, а на некоторой глубине, то часть полученной энергии может быть потеряна вследствие случайных столкновений электрона в веществе, и его кинетическая энергия окажется меньшей. Следовательно, энергия падающего на вещество кванта излучения расходуется на совершение электроном работы выхода и сообщение вылетевшему фотоэлектрону кинетической энергии.

Закон сохранения энергии для такого процесса будет выражаться равенством

(2)

Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта .

Из уравнения Эйнштейна непосредственно следует, что максимальная кинетическая энергия или скорость фотоэлектрона зависит от частоты излучения. С уменьшением частоты излучения кинетическая энергия уменьшается и при некоторой частоте может стать равной нулю. Уравнение Эйнштейна в этом случае будет иметь вид

h ν 0 = А вых.

Частота ν 0 , соответствующая этому соотношению будет иметь минимальное значение и является красной границей фотоэффекта. Из последнего ясно, что красная граница фотоэффекта определяется работой выхода электрона и зависит от химической природы вещества и состояния его поверхности. Длина волны, соответствующая красной границе фотоэффекта, может быть рассчитана по формуле . При hν < А вых фотоэффект прекращается. Число высвобождаемых вследствие фотоэффекта электронов должно быть пропорционально числу падающих на поверхность вещества квантов излучения, а, следовательно, потоку излучения Ф.

С изобретением лазеров были получены большие мощности излучения, в этом случае один электрон может поглотить два и более (N) фотонов (N = 2…7). Такое явление называется многофотонным (нелинейным) фотоэффектом. Уравнение Эйнштейна для многофотонного фотоэффекта имеет вид

В этом случае красная граница фотоэффекта может смещаться в сторону более длинных волн.

Характер зависимости фототока I от разности потенциалов между анодом и катодом U (вольт - амперная характеристика или ВАХ) при постоянном потоке излучения на фотокатод монохроматического излучения приведен на Рис. 1.

Существование фототока при напряжении U = 0 объясняется тем, что фотоэлектроны, испускаемые катодом, имеют некоторую начальную скорость и, соответственно, кинетическую энергию, а, следовательно, могут достигать анода без внешнего электрического поля. По мере увеличения значения U (в случае положительного потенциала на аноде) фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода.

Пологий характер этого участка вольтамперной характеристики свидетельствует о том, что электроны вылетают из катода с различными скоростями. Максимальное значение фототока, называемое током насыщения I нас , достигается при таком значении U, при котором все электроны, испускаемые катодом, попадают на анод. Значение I нас. определяется числом фотоэлектронов, испускаемых катодом за 1 с и зависит от величины потока излучения, падающего на фотокатод.

Если анод имеет отрицательный потенциал, то образующееся электрическое поле тормозит движение фотоэлектронов. Это приводит к уменьшению числа электронов, достигающих анода, а, следовательно, и уменьшению фототока. Минимальное значение напряжения отрицательной полярности, при котором ни один из электронов, даже обладающий при вылете из катода максимальной скоростью, не может достигнуть анода, т.е. фототок становится равным нулю, называется задерживающим напряжением U o .

Значение задерживающего напряжения связано с начальной максимальной кинетической энергией электронов соотношением

С учетом этого, что уравнение Эйнштейна можно записать в также в виде

hν = А вых + eU 0 .

Если менять величину падающего на катод потока излучения при одном и том же спектральном составе, вольтамперные характеристики будут иметь вид, приведенный на Рис. 2.

Если при неизменной величине потока излучения менять его спектральный состав, т.е. частоту излучения, то вольтамперные характеристики будут меняться, как показано на Рис.3.

U 0 0 U U 03 U 02 U 01 0 U

F 3 > F 2 > F 1 n = const n 3 > n 2 > n 1 F = const