Альтернативные виды электроэнергии. Краткий обзор основных видов альтернативной электроэнергетики

Вирус WannaCry, он же WannaCrypt или Wanna Decryptor, поразил виртуальный мир в мае 2017 года. Вредоносная программа проникала в локальные сети, заражая один компьютер за другим, шифровала файлы на дисках и требовала от пользователя перевести вымогателям от $300 до $600 за их разблокировку. Аналогичным образом действовал вирус Petya, получивший едва ли не политическую известность летом 2017 года.

Оба сетевых вредителя проникали в операционную систему компьютера-жертвы через одну и ту же дверь - сетевые порты 445 или 139. Вслед за двумя крупными вирусами и более мелкие виды компьютерной заразы начали эксплуатировать Что же это за порты, которые сканируют все, кому не лень?

За что отвечают порты 445 и 139 в ОС Windows

Данные порты используются в системе Windows для совместной работы с файлами и принтерами. Первый порт отвечает за работу протокола Server Message Blocks (SMB), а через второй работает протокол Network Basic Input-Output System (NetBIOS). Оба протокола позволяют компьютерам под управлением Windows подключаться по сети к «расшаренным» папкам и принтерам поверх основных протоколов TCP и UDP.

Начиная с Windows 2000, совместная работа с файлами и принтерами по сети осуществляется в основном через порт 445 по прикладному протоколу SMB. Протокол NetBIOS использовался в более ранних версиях системы, работая через порты 137, 138 и 139, и данная возможность сохранилась в более поздних версиях системы в качестве атавизма.

Чем опасны открытые порты

445 и 139 представляет собой незаметную, но значимую уязвимость в Windows. Оставляя данные порты незащищенными, вы широко распахиваете дверь на свой жесткий диск для непрошеных гостей вроде вирусов, троянов, червей, а также для хакерских атак. А если ваш компьютер включен в локальную сеть, то риску заражения вредоносным программным обеспечением подвергаются все ее пользователи.

Фактически, вы открываете совместный доступ к своему жесткому диску любому, кто сумеет получить доступ к данным портам. При желании и умении злоумышленники могут просмотреть содержимое жесткого диска, а то и удалить данные, форматировать сам диск или зашифровать файлы. Именно это и делали вирусы WannaCry и Petya, эпидемия которых прокатилась по миру этим летом.

Таким образом, если вы заботитесь о безопасности своих данных, будет не лишним узнать, как закрыть порты 139 и 445 в Windows.

Выясняем, открыты ли порты

В большинстве случаев порт 445 в Windows открыт, так как возможности совместного доступа к принтерам и файлам автоматически включаются еще при установке Windows. Это можно легко проверить на своей машине. Нажмите сочетание клавиш Win + R , чтобы открыть окно быстрого запуска. В нем введите cmd” для запуска командной строки. В командной строке наберите “netstat - na ” и нажмите Enter . Данная команда позволяет просканировать все активные сетевые порты и вывести данные об их статусе и текущих входящих подключениях.

Через несколько секунд появится таблица статистики по портам. В самом верху таблицы будет указан IP-адрес порта 445. Если в последнем столбце таблицы будет стоять статус “LISTENING” , то это означает, что порт открыт. Аналогичным образом можно найти в таблице порт 139 и выяснить его статус.

Как закрыть порты в Windows 10/8/7

Существует три основных метода, позволяющих закрыть порт 445 в Windows 10, 7 или 8. Они не сильно отличаются друг от друга в зависимости от версии системы и достаточно просты. Можно попробовать любой из них на выбор. Этими же способами можно закрыть и порт 139.

Закрываем порты через брандмауэр

Первый метод, позволяющий закрыть 445 порт в Windows, является наиболее простым и доступен практически любому пользователю.

  1. Перейдите в Пуск > Панель управления > Брандмауэр Windows и нажмите на ссылку Дополнительные параметры .
  2. Нажмите Правила для входящих исключений > Новое правило . В отобразившемся окне выберите Для порта > Далее > Протокол TCP > Определенные локальные порты , в поле рядом введите 445 и нажмите Далее.
  3. Далее выберите Блокировать подключение и опять нажмите Далее . Установите три галочки, снова Далее . Укажите название и, при желании, описание нового правила и нажмите Готово .

Теперь возможность входящего соединения на порт 445 будет закрыта. Если необходимо, аналогичное правило можно создать и для порта 139.

Закрываем порты через командную строку

Второй метод включает в себя операции с командной строкой и больше подходит для продвинутых пользователей Windows.

  1. Нажмите Пуск и в строке поиска в нижней части меню наберите “cmd” . В отобразившемся списке кликните правой кнопкой мыши на cmd и выберите Запуск от имени администратора .
  2. В окно командной строки скопируйте команду netsh advfirewall set allprofile state on. Нажмите Enter.
  3. Затем скопируйте следующую команду: netsh advfirewall firewall add rule dir=in action=block protocol=TCP localport=445 name="Block_TCP-445". Нажмите Enter еще раз.

В результате выполнения процедуры так же будет создано правило брандмауэра Windows для закрытия порта 445. Некоторые пользователи, впрочем, сообщают, что данный метод не работает на их машинах: при проверке порт остается в статусе “LISTENING”. В этом случае следует попробовать третий способ, который также достаточно прост.

Закрываем порты через реестр Windows

Блокировать соединения на порт 445 можно также путем внесения изменений в системный реестр. Использовать данный метод следует с осторожностью: реестр Windows является основной базой данных всей системы, и случайно допущенная ошибка может привести к непредсказуемым последствиям. Перед работой с реестром рекомендуется сделать резервную копию, например, с помощью программы CCleaner.

  1. Нажмите Пуск и в строке поиска введите “regedit” . Нажмите Enter .
  2. В дереве реестра перейдите в следующий каталог: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\NetBT\Parameters.
  3. В правой части окна отобразится список параметров. Нажмите правой кнопкой мыши в свободной области списка и выберите Создать . В раскрывающемся меню выберите Параметр DWORD (32-bit) или Параметр DWORD (64-bit) в зависимости от типа вашей системы (32-битная или 64-битная).
  4. Переименуйте новый параметр в SMBDeviceEnabled , а затем дважды кликните по нему. В отобразившемся окне Изменение параметра в поле Значение замените 1 на 0 и нажмите OK для подтверждения.

Этот способ является наиболее эффективным, если точно следовать приведенной выше инструкции. Следует отметить, что он относится только к порту 445.

Для того чтобы защита была эффективнее, после внесения изменений в реестр можно также отключить службу Windows Server. Для этого выполните следующее:

  1. Нажмите Пуск и в строке поиска введите "services.msc". Откроется список системных служб Windows.
  2. Найдите службу Server и дважды кликлите по ней. Как правило, она располагается где-то в середине списка.
  3. В отобразившемся окне в раскрывающемся списке Тип запуска выберите Отключена и нажмите ОК .

Приведенные выше методы (за исключением третьего) позволяют закрыть не только порт 445, но и порты 135, 137, 138, 139. Для этого при выполнении процедуры просто заменяйте номер порта на нужный.

Если вам впоследствии понадобится открыть порты, просто удалите созданное правило в брандмауэре Windows или измените значение созданного в реестре параметра с 0 на 1, а потом включите обратно службу Windows Server, выбрав в списке Тип запуска значение Автоматически вместо Отключена .

Важно! Необходимо помнить, что порт 445 в Windows отвечает за совместный доступ к файлам, папкам и принтерам. Таким образом, если вы закроете данный порт, вы больше не сможете «расшарить» общую папку для других пользователей или распечатать документ по сети.

Если ваш компьютер включен в локальную сеть и данные функции необходимы вам для работы, следует воспользоваться сторонними средствами защиты. К примеру, активируйте сетевой экран вашего антивируса, который возьмет под контроль все порты и будет осуществлять их мониторинг на предмет несанкционированного доступа.

Выполняя приведенные выше рекомендации, можно обезопасить себя от незаметной, но серьезной уязвимости в Windows и защитить свои данные от многочисленных видов зловредного программного обеспечения, которое способно проникнуть в систему через порты 139 и 445.

Не все из нас специалисты в компьютерных сферах. Так, у пользователей интернета частенько возникает проблема с тем, как заблокировать порт, что является помехой для работы на компьютере тогда, когда осуществляют выход в интернет. При этом, зачастую подобная задача стоит не перед профессионалом, а перед обычным пользователем, который не разбирается в технических тонкостях и просто не знает с чего начать. Следует сразу отметить, что блокировка портов - дело довольно простое и, следуя простым инструкциям, можно очень быстро получить желаемый результат. При этом, не требуется особых технических навыков и знаний.

Фаервол

Существует такая программа, как фаервол, их разновидностей имеется просто громадное количество. К примеру, на сайте Softodrom.ru можно отыскать множество ссылок, по которым можно перейти на раздел с софтом. Кроме того, различных фаерволов в интернете можно отыскать предостаточно, они могут быть платными и бесплатными.

Comodo Firewall

Чтобы заблокировать порты при помощи, к примеру, Comodo Firewall, следует его для начала установить. Однако в самом начале нужно удалить все другие подобные программы, чтобы не возник конфликт. Установка проста, как и для всех других Windows программ. Следует читать информацию и нажимать кнопку «Далее». Конечные настройки следует установить «автоматические». Программа будет готова к работе после перезагрузки системы.

После первого запуска программы, необходимо будет определиться: каким программам разрешить доступ в интернет, а каким нет. Для этого следует в специальном окне, напротив перечня программ, установить статус «разрешить» или же «запретить». В случае, если для той или иной программы изменения статуса в дальнейшем не предвидятся, то нужно добавить галочку, там где предлагается «запомнить ответ для этого приложения». В некоторых случаях, чтобы заблокировать порт в Windows XP, понадобится особый драйвер. Его, при желании, можно поискать и скачать с интернета.

А можно и проще

Однако прежде чем ломать голову над специальными программами, можно попробовать воспользоваться встроенными возможностями операционной системы. В свойствах подключения следует перейти к протоколу интернета, затем свойства – дополнительно – параметры – фильтрация – свойства. После чего поступит предложение о включении фильтрации. Там можно отобрать нужные программы и таким образом ограничить выход в интернет, для отдельных из них.

Таким образом, становиться ясно, что проблема того, как заблокировать порты, решается достаточно просто. Важно лишь знать, что должно иметь выход в и-нет, а что нет, следовать инструкциям и ставить галочки, где нужно.


Внимание, только СЕГОДНЯ!

ДРУГОЕ

Comodo - это бесплатный программный продукт, который обеспечивает защиту компьютеров, работающих на всех версиях ОС…

Нередко случается так, что брандмауэр Windows блокирует ту или иную программу, точнее говоря - блокирует те ее функции,…

Иногда, из соображений безопасности, на компьютерах блокируют порты, через которые может произойти утечка информации.…

Далеко не каждый из нас может похвастаться богатым опытом работы с программным обеспечением. Но многие сталкиваются с…

Каждый пользователь интернета при поиске той или иной информации время от времени натыкается на порно сайты и весьма…

Специалисты не советуют удалять Windows Media Player полностью – к нему в процессе работы могут незаметно для…

Произвести смену оформления курсора можно несколькими способами. При этом все они являются совсем несложными и не…

Как установить программу на компьютер?В современном мире едва ли не каждый человек знает, как пользоваться компьютером.…

Прежде чем осветить тему, как отключить Фаервол, кратко посмотрим, что это вообще такое. Возможно кому-то не известно…

Нередко пользователи ПК (персональных компьютеров) сталкиваются с ситуациями, когда совершенно неожиданно у них на…

Извечная проблема многих пользователей - как открыть порт для CSS? Делается это просто, но нужно научиться этому.Итак,…

Такой высокотехнологичный прибор как iPhone трудно представить без интернета. Однако много пользователей в целях…

Компьютерный порт - это специальное соединение, предназначенное для принятия и отправки данных. Но, как узнать порт…

Windows Defender для Windows 8 - антивирусная программа, которая установлена по умолчанию. Это достаточно хороший…

Динамика развития альтернативной энергетики по-настоящему впечатляет. Так, совокупный мировой объем установленных мощностей ВИЭ к началу 2010 года достиг 1230 ГВт, увеличившись почти на 7% с 2008 года. Такая ситуация дает прекрасный повод для оптимизма для сторонников развития «зеленой» энергетики. Правда, основную долю установленных мощностей возобновляемой энергетики составляет гидроэнергетика - 980 ГВт. Что касается мирового производства электроэнергии, то ВИЭ, без учета гидроэнергетики, составляла лишь 3% (с учетом гидроэнергетики - 18%).

Развитие таких видов возобновляемых источников энергии, как ветровая и солнечная энергетика, а также производство энергии, основанной на использовании биотоплива и биомассы, приковывает к себе основное внимание. Причем именно данные три направления «зеленой» энергетики требуют особой административной и финансовой поддержки со стороны властей для того, чтобы успешно развиваться.

Ветровая энергетика. Среди других видов ВИЭ к настоящему времени уже занимает наиболее весомые позиции среди других видов «зеленой» энергетики (без учета гидрогенерации) и продолжает демонстрировать уверенные темпы роста. Так, в конце 2010 года общая установленная мощность всех ветрогенераторов составила 196,6 ГВт. В том же году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 430 ТВт/часов (2,5% всей произведённой человечеством электрической энергии). Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, в 2011 году в Дании с помощью ветрогенераторов производилось 28 % всего электричества, в Португалии - 19%, в Ирландии - 14% , в Испании - 16% и в Германии - 8%.

Солнечная энергетика. По данным Ассоциации предприятий солнечной энергетики, суммарная мощность всех установок в мире на конец 2011 года составила 65 ГВт. Рост к 2010 году составил 51%. Однако сейчас, в солнечной энергетике спрос отстает от предложения – за год устанавливается не более половины мощности, которую могут обеспечить производители. Прогноз роста спроса на оборудование составляет 10-15% в год.

Биоэнергетика. К настоящему времени производство биотоплива и топливных гранул является одним из наиболее развитых сегментов рынка ВИЭ. Объем мирового производства биотоплива в 2011 году достиг показателя в 1,819 млн. баррелей, что немного ниже показателя предыдущего года. Объем производства топливных гранул достиг 8-10 млн тонн. Прирост по отношению к 2008 году составил около 20%. Суммарный объем производственных мощностей достиг показателя в 12 млн. тонн пеллет в год.

Довольно внушителен и объем инвестиций, который был направлен за последние годы в развитие альтернативной генерации. По оценкам International Energy Agency (IEA) и исследовательской компании New Energy Finance, совокупный объем вложений в «зеленую» энергетику составил в 2010 году 211 млрд долл. США, что примерно на треть больше инвестиций 2009 года. Правда кризис внес в динамику инвестиций в ВИЭ свои коррективы. По сравнению с предыдущим периодом объем капиталовложений сократился на 6%. Кроме того, ухудшилось финансовое положение компаний, которые работали на рынке ВИЭ, что привело даже к банкротствам некоторых из них.

Тем не менее, несмотря на определенное торможение динамики капиталовложений в «зеленую» энергетику, эксперты дают весьма благоприятные прогнозы ее дальнейшего развития. В частности, к 2035 году, как считают в IEA, треть мировой электроэнергии будет вырабатываться ВИЭ, а суммарные инвестиции в них к этому периоду составят около 5,7 триллиона долларов. Применение биотоплива возрастет более чем в четыре раза и, таким образом, будет удовлетворять 8% спроса на топливо для транспортных средств (в настоящее время доля биотоплива составляет около 3%). При этом суммарные инвестиции в развитие возобновляемых источников, по прогнозу IEA, составят почти 5,7 триллиона долларов. Согласно другому прогнозу IEA, основная часть электроэнергии в мире следующие 50 лет будет производиться за счёт солнечной генерации.

За последние годы былой энтузиазм по поводу будущего ВИЭ слегка поутих. Сейчас все чаще встречаются и откровенно скептические оценки относительно будущего «зеленой» энергетики. В частности, в ноябре 2010 года были обнародованы результаты исследования Калифорнийского университета в Дэвисе, согласно которым человечеству потребуется 130 лет для полной замены нефти и нефтепродуктов на новые альтернативные виды энергии, включая биотопливо. При этом задержка с переходом на новую энергетику связана и с тем, что некоторые из ее видов представляют более значительную опасность для экологии, чем нефть и нефтепродукты.

Несколько подрывают доверие к развитию «зеленой» энергетики и то, что по отношению к будущей динамике ее развития изначально была заложена чрезмерно высокая планка. Поэтому многие прогнозы на этот счет оказывались, по итогу, слишком оптимистичными. В частности, несмотря на все обещания, ей так и не удалось к настоящему времени сравняться по стоимости производимой энергии с традиционной генерацией.

Тем не менее, несмотря на то, что продвижение ВИЭ сталкивается с множеством проблем, их сторонники не унывают. На «зеленую» энергетику возлагают большие надежды, причем необходимость их развития уже по умолчанию преподносится как нечто само собой разумеющееся. Она, своего рода, стала неотъемлемым атрибутом того, что считается цивилизованным и правильным.

ВИЭ активно стараются представить как магистральный и прогрессивный тренд, по которому неизбежно будет двигаться современное человечество. Сторонники альтернативных видов топлива говорят о неизбежности «зеленой» революции в энергетике. Так по оценке Wind Energy Association, к 2020 году более 12% мирового спроса на электроэнергию будет обеспечиваться именно из этого источника. Еще больший оптимизм в отношении развития альтернативной энергетики проявляет European Renewable Energy Council (EREC), согласно прогнозам которого, в 2030 году возобновляемые источники будут обеспечивать 35% мирового энергопотребления.

Для нормального полноценного существования современному человеку необходима энергия. Без энергии мы не сможем согреть наши дома зимой, не сможем производить множество продуктов и вещей, без которых наша жизнь уже просто немыслима. Традиционно человечество привыкло получать энергию из невозобновляемых источников, таких, например, как, газовые или нефтяные месторождения. Однако невозобновляемые источники потому так и называются, что рано или поздно запас их будет исчерпан, и люди окажутся в критическом положении, если, конечно, вовремя не подготовятся к такому развитию событий, выделив время и ресурсы на развитие такой важнейшей научно-технической отрасли как альтернативная энергетика.

НАПРАВЛЕНИЯ НЕТРАДИЦИОННОЙ ЭНЕРГЕТИКИ

В качестве возобновляемых источников энергии человечеством может использоваться энергия солнца, ветра, энергия приливов, геотермальная и другие нетрадиционные источники энергии. Все эти источники энергии глубоко исследуют разные виды альтернативной энергетики.

  • Гелиоэнергетика

Это направление нетрадиционной энергетики основано на использовании солнечной энергии, главными преимуществами которой являются неиссякаемость, отсутствие вредных выбросов при выработке энергии и доступность. А одним из усложняющих факторов в её применении является зависимость поступающего на землю количества солнечной энергии от погоды, времени суток и времени года, что затрудняет использование гелиоэнергии в областях с низким уровнем солнечного излучения. Для преодоления этого фактора, используются аккумуляторы.

  • Геотермальная энергетика

В центре внимания данного вида нетрадиционной энергетики находится тепло земных глубин, которое на специальных станциях перерабатывается в электрическую энергию или же в ряде случаев непосредственно используется для отопления зданий. Для того, чтобы добраться до тепла в земных недрах, чаще всего, необходимо бурить скважины. Особенно эффективен данный способ получения энергии в местах, где горячие воды находятся очень близко от земной поверхности.

  • Ветряная энергетика

Ещё один неисчерпаемый источник энергии – это ветер. Направление энергетики, занимающееся преобразованием энергии ветра в другие виды энергии, называют ветряной энергетикой . Ветряные энергоустановки активно применяются развитыми странами для получения нужных видов энергии. Так, например, уже сейчас почти 10 процентов нужной Европе энергии получается при помощи энергии ветра, а лет через пятнадцать по прогнозам специалистов энергия, используемая европейскими странами, будет на четверть ветряной.

  • Биотопливная энергетика

Данный вид нетрадиционной энергетики занимается исследованием генерации энергии из биологического сырья (стеблей и других частей растений, отходов животноводческой продукции и др.)

  • Волновая энергетика

Это направление нетрадиционной энергетики осваивает такой интересный возобновляемый источник как энергия волн.

ПЕРСПЕКТИВЫ НЕТРАДИЦИОННОЙ ЭНЕРГЕТИКИ

Все направления нетрадиционной энергетики активно развиваются во многих странах. Однако в тех странах, которые оказывают исследованиям, разработке и внедрению альтернативных способов получения энергии всестороннюю государственную – законодательную и экономическую – поддержку, результаты особенно впечатляют. В развитых страна доля возобновляемых источников энергии постоянно растёт, что позволяет во многих случаях существенно экономить традиционные виды энергии, а в ряде случаев полностью заменять их.

Уже сейчас на космических станциях используется энергия солнца для работы важных систем, во многих странах активно строятся ветряные и солнечные электростанции, архитекторы при проектировании и строительстве домов изначально закладывают возможность использования возобновляемых источников энергии. В недалёком будущем учёные планируют реализовать смелые, интересные научно-технические проекты, такие например, как строительство солнечных электростанций по экватору земного шара.

Так что, перспективы развития нетрадиционной энергетики – колоссальны, а полноценный переход на использование возобновляемых источников энергии изменит наш мир.

Альтернативная энергетика – это, своего рода, спасательный круг для человечества в будущем. От того, насколько мы освоим возобновляемые источники энергии, напрямую зависит дальнейшее развитие нашей цивилизации. Вот почему все высокоразвитые страны стремятся поддерживать исследования в этой области, воплощать проекты, основанные на использовании солнечной, ветряной или другой возобновляемой энергии, чтобы частично или полностью отказаться от традиционных источников энергии, обрести долгожданную независимость от невозобновляемых ресурсов.

Активный переход к использованию чистых возобновляемых видов энергии поможет человечеству качественно изменить и улучшить жизнь на планете.

Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии — в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

«Зеленые технологии» позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной надолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор . Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 — сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 — соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 — сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • . Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • . Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • . Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 — подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 — изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 — обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть и горизонтальные . Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы . Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими . Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги . При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти , вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор , который вырабатывает переменный ток;
  • Контроллер управления лопастями , отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи , нужны для накопления и выравнивания электрической энергии;
  • Инвертор , выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта , необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 — изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 — изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 — переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Выводы и полезное видео по теме

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

Ваш дом использует альтернативную энергетику в качестве источников тепла и электроэнергии? Вы самостоятельно собрали ветрогенератор или изготовили солнечные батареи? Поделитесь, пожалуйста, своим опытом в комментариях к нашей статье.