Расчет кинетической энергии. Энергия: потенциальная и кинетическая энергия

Для решения задач при помощи теоремы об изменении кинетической энергии требуется умение вычислять кинетическую энергию и работу сил. Вычисление работы рассмотрено в предыдущих пунктах. Здесь рассмотрим вычисление кинетической энергии.

В общем случае кинетическая энергия системы вычисляется по формуле

Если система состоит из нескольких твердых тел, то кинетическая энергия будет равна сумме кинетических энергий отдельных тел: .

Рассмотрим, как вычисляется кинетическая энергия тела в различных случаях движения. При этом будем исходить из общей формулы для кинетической энергии системы, в которой под будем понимать теперь массы и скорости малых частиц тела, на которые мысленно разбивается движущееся тело.

При поступательном движении скорости всех точек тела геометрически равны: для вычисления кинетической энергии получаем формулу

(скалярный квадрат вектора равен квадрату его модуля), то в конечном результате содержится модуль v скорости v тела.

Таким образом, кинетическая энергия твердого тела при поступательном движении определяется так же, как для материальной точки с массой и скоростью, равными массе и скорости тела:

При вращательном движении (рис. 52) будем иметь.

Получено правило: кинетическая энергия тела при его вращении вокруг неподвижной оси равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости.

При сложном движении тела кинетическую энергию вычисляют при помощи следующей теоремы (теоремы кинетическая энергия механической системы равна кинетической энергии ее центра масс в предположении, что в нем сосредоточена масса всей системы, плюс кинетическая энергия системы в ее относительном движении по отношению к осям Кёнига.

Докажем эту теорему. Пусть скорости материальных точек системы относительно неподвижной системы координат Oxyz равны соответственно . Введем вспомогательную систему координат С началом в центре масс системы С и осями, движущимися поступательно вместе с центром масс (рис. 53; на рисунке оси выбраны соответственно параллельными осям ). Как и для твердого тела (см. с. 56 и рис. 32) эти вспомогательные оси называются осями Кёнига. Теперь движение каждой точки системы можно рассматривать как движение сложное, в котором переносным является движение осей Кёнига, а относительным - движение точки по отношению к осям Кёнига. Для скоростей , являющихся абсолютными скоростями, на основании теоремы сложения скоростей можем записать:

Здесь учтено, что при переносном поступательном движении переносные скорости всех точек одинаковы и равны скорости начала по-движной системы координат (в данном случае - скорости центра масс). Подставляя это выражение в формулу для кинетической энергии системы, получаем:

В этой формуле - кинетическая энергия системы в относительном движении по отношению к осям Кёнига; - относительная скорость центра масс по отношению к этим же осям. В силу выбора подвижных осей и из полученного равенства следует - момент инерции тела относительно оси Кёнига, перпендикулярной плоскости движения. После подстановки этого значения в формулу Кёнига, получаем

По этой формуле и следует вычислять кинетическую энергию тела при плоскопараллельном движении.

А4. Какие изменения отмечает человек в звуке при увеличении частоты колебаний в звуковой волне?
1) Повышение высоты тона
2) Понижение высоты тона
3) Увеличение громкости
4) Уменьшение громкости

А5. Расстояния от двух когерентных источников волн до точки М равны а и b. Разность фаз колебаний источников равна нулю, длина волны равна l. Если излучает только один источник волн, то амплитуда колебаний частиц среды в точке М равна А1, если только второй, то – А2. Если разность хода волн a – b =3l/2 , то в точке М амплитуда суммарного колебания частиц среды
1) равна нулю 2) равна | А1 – А2| 3) равна | А1 + А2|
4) меняется со временем периодически

А6. Выберите правильное утверждение.
А. Опираясь на эксперименты Фарадея по исследованию электромагнитной индукции, Максвелл теоретически предсказал существование электромагнитных волн.
В. Опираясь на теоретические предсказания Максвелла, Герц обнаружил электромагнитные волны экспериментально.
С. Опираясь на эксперименты Герца по исследованию электромагнитных волн, Максвелл создал теорию их распространения в вакууме.
1) Только А и В 2) Только А и С 3) Только В и С 4) И А, и В, и С

А7. Какое утверждение верно?
В теории электромагнитного поля Максвелла
А – переменное электрическое поле порождает вихревое магнитное поле
Б – переменное магнитное поле порождает вихревое электрическое поле

А8. В одной научной лаборатории для ускорения заряженных частиц используется линейный ускоритель, а во второй – циклотрон, в котором частицы разгоняются, двигаясь по спиралевидной траектории. В какой из лабораторий следует учесть возможность возникновения опасных для человека электромагнитных излучений.
1) Только в первой 2) Только во второй 3) В обеих лабораториях
4) Ни в одной из лабораторий

А9. Какое утверждение правильное?
Излучение электромагнитных волн происходит при
А – движении электрона в линейном ускорителе
Б – колебательном движении электронов в антенне
1) Только А 2) Только Б 3) И А, и Б 4) Ни А, ни Б

А10. Заряженная частица не излучает электромагнитные волны в вакууме
1) равномерном прямолинейном движении
2) равномерном движении по окружности
3) колебательном движении
4) любом движении с ускорением

А11. Скорость распространения электромагнитных волн
1) имеет максимальное значение в вакууме
2) имеет максимальное значение в диэлектриках
3) имеет максимальное значение в металлах
4) одинакова в любых средах

А12. В первых экспериментах по изучению распространения электромагнитных волн в воздухе были измерены длина волны см и частота излучения МГц. На основе этих неточных экспериментов было получено значение скорости света в воздухе, равное примерно
1) 100000 км/с 2) 200000 км/с 3) 250000 км/с 4) 300000 км/с

А13. Колебания электрического поля в электромагнитной волне описываются уравнением: Е=10sin(107t). Определите частоту колебаний (в Гц).
1) 107 2) 1,6 *106 3)(107 t) 4) 10

А14. При распространении электромагнитной волны в вакууме
1) происходит только перенос энергии
2) происходит только перенос импульса
3) происходит перенос и энергии, и импульса
4) не происходит переноса ни энергии, ни импульса

А15. При прохождении электромагнитной волны в воздухе происходят колебания
1) молекул воздуха
2) плотности воздуха
3) напряжённости электрического и индукции магнитного полей
4) концентрации кислорода

А16. Явлением, доказывающим, что в электромагнитной волне вектор напряжённости электрического поля колеблется в направлении, перпендикулярном направлению распространению электромагнитной волны, является
1) интерференция 2) отражение 3) поляризация 4) дифракция

А17. Укажите сочетание тех параметров электромагнитной волны, которые изменяются при переходе волны из воздуха в стекло
1) скорость и длина волны 2) частота и скорость
3) длина волны и частота 4) амплитуда и частота

А18. Какое явление характерно для электромагнитных волн, но не является общим свойством волн любой природы?
1) интерференция 2) преломление 3) поляризация 4) дифракция

А19. На какую длину волны нужно настроить радиоприемник, чтобы слушать радиостанцию «Европа+», которая вещает на частоте 106,2 МГц?
1) 2,825 дм 2) 2,825 см 3) 2,825 км 4) 2,825 м

А20. Амплитудная модуляция высокочастотных электромагнитных колебаний в радиопередатчике используется для
1) увеличения мощности радиостанции
2) изменения амплитуды высокочастотных колебаний
3) изменения амплитуды колебаний звуковой частоты
4) задания определенной частоты излучения данной радиостанции

3.4. Механическая энергия

3.4.1. Кинетическая энергия

Кинетическая энергия поступательного движения тела определяется формулой

где m - масса движущегося тела; v - модуль его скорости.

Для расчета кинетической энергии при поступательном движении тела существует еще одна формула:

где P = mv - модуль импульса движущегося тела.

Кинетическая энергия вращательного движения тела определяется формулой

W k = m ω 2 R 2 2 ,

где m - масса движущегося тела; ω - величина угловой скорости (циклическая частота); R - радиус окружности, по которой движется тело.

Для расчета кинетической энергии при вращательном движении тела существует еще одна формула:

W k = 2 m π 2 ν 2 R 2 ,

где ν - частота вращения тела.

При решении задач на расчет кинетической энергии системы тел полезно помнить, что она складывается из кинетических энергий каждого из тел:

W k сис = W k 1 + W k 2 + ... + W k N ,

где W k 1 , W k 2 , ..., W kN - кинетические энергии каждого тела.

При решении задач на расчет кинетической энергии вращательного движения могут оказаться полезными следующие формулы:

  • связь между линейной v и угловой ω скоростями:

v = ωR ,

где R - радиус окружности по которой движется тело;

  • связь между циклической частотой ω и частотой ν:
  • связь между циклической частотой ω (или частотой ν) и периодом обращения тела по окружности T :

ωT = 2π или ν = 1 T .

Пример 24. Координата тела, движущегося вдоль оси Ox , зависит от времени по закону x (t ) = 8,0 − 2,0t + t 2 , где координата задана в метрах, время - в секундах. Определить изменение кинетической энергии тела с начала третьей до конца четвертой секунды движения. Масса тела составляет 3,0 кг.

Решение. Кинетическая энергия тела определяется формулами:

W k 1 = m v 2 (t 1) 2 ;

W k 2 = m v 2 (t 2) 2 ,

где v (t 1) - модуль скорости тела в начале третьей секунды; v (t 2) - модуль скорости тела в конце четвертой секунды.

Уравнение движения тела

x (t) = 8,0 − 2,0 t + t 2

позволяет установить закон изменения проекции скорости на ось Ox с течением времени в виде:

v x (t) = v 0 x + a x t ,

где v 0 x = −2,0 м/с - проекция начальной скорости на ось Ox ; a x = = 2,0 м/с 2 - проекция ускорения на указанную ось.

Таким образом, зависимость проекции скорости от времени, записанная в явном виде

v x (t) = − 2,0 + 2,0 t ,

позволяет получить соответствующие проекции скоростей:

  • в начале третьей секунды движения (t 1 = 2 c)

v x (t 1) = − 2,0 + 2,0 t 1 = − 2,0 + 2,0 ⋅ 2 = 2,0 м/с;

  • в конце четвертой секунды движения (t 2 = 4 c)

v x (t 2) = − 2,0 + 2,0 t 2 = − 2,0 + 2,0 ⋅ 4 = 6,0 м/с.

Значения кинетической энергии тела в указанные моменты времени:

  • в начале третьей секунды движения (t 1 = 2 c)

W k 1 = 3,0 ⋅ (2,0) 2 2 = 6,0 Дж,

  • в конце четвертой секунды движения (t 2 = 4 c)

W k 2 = 3,0 ⋅ (6,0) 2 2 = 54 Дж.

Искомая разность кинетических энергий составляет

Δ W k = W k 2 − W k 1 = 54 − 6,0 = 48 Дж.

Таким образом, кинетическая энергия тела за указанный интервал времени возросла на 48 Дж.

Пример 25. Тело движется в плоскости xOy по траектории вида x 2 + y 2 = 25 под действием центростремительной силы, величина которой равна 50 Н. Масса тела составляет 2,0 кг. Координаты x и y заданы в метрах. Найти кинетическую энергию тела.

Решение. Траектория движения тела представляет собой окружность радиусом 5,0 м. Согласно условию задачи, на тело действует только одна сила, направленная к центру этой окружности.

Модуль указанной силы является постоянной величиной, поэтому тело обладает постоянным центростремительным ускорением, не влияющим на величину скорости тела; следовательно, тело движется по окружности с постоянной скоростью.

Рисунок иллюстрирует данное обстоятельство.

Величина центростремительной силы определяется формулой

F ц. с = m v 2 R ,

где m - масса тела; v - модуль скорости тела; R - радиус окружности, по которой движется тело.

Выражение для кинетической энергии тела имеет вид:

Отношение уравнений

F ц. с W k = m v 2 R 2 m v 2 = 2 R

позволяет получить формулу для расчета искомой кинетической энергии:

Окружающий мир пребывает в постоянном движении. Любое тело (объект) способно выполнить определенную работу, даже если оно в состоянии покоя. Но для совершения любого процесса требуется приложить некоторые усилия , порой немалые.

В переводе с греческого языка этот термин означает «деятельность», «сила», «мощь». Все процессы на Земле и за пределами нашей планеты происходят благодаря этой силе, которой обладают окружающие объекты, тела, предметы.

Вконтакте

Среди большого разнообразия выделяют несколько основных видов данной силы, отличающихся прежде всего своими источниками:

  • механическая – данный вид характерен для движущихся в вертикальной, горизонтальной или другой плоскости тел;
  • тепловая – выделяется в результате неупорядоченного молекул в веществах;
  • – источником этого вида является движение заряженных частиц в проводниках и полупроводниках;
  • световая – переносчиком ее являются частицы света – фотоны;
  • ядерная – возникает вследствие самопроизвольного цепного деления ядер атомов тяжелых элементов.

В этой статье пойдет речь о том, что собой представляет механическая сила предметов, из чего она состоит, от чего зависит и как преобразуется во время различных процессов.

Благодаря этому виду предметы, тела могут находиться в движении либо в состоянии покоя. Возможность такой деятельности объясняется присутствием двух основных составляющих:

  • кинетической (Ек);
  • потенциальной (Еп).

Именно сумма кинетической и потенциальной энергий определяет общий численный показатель всей системы. Теперь о том, какие формулы используются для расчетов каждой из них, и в чем измеряется энергия.

Как рассчитать энергию

Кинетическая энергия – это характеристика любой системы, которая находится в движении . Но как найти кинетическую энергию?

Сделать это несложно, так как расчетная формула кинетической энергии весьма проста:

Конкретное значение определяется двумя основными параметрами: скоростью перемещения тела (V) и его массой (m). Чем больше данные характеристики, тем большей значением описываемого явления обладает система.

Но если объектом не совершаются перемещения (т.е. v = 0), то и кинетическая энергия равна нулю.

Потенциальная энергияэто характеристика, зависящая от положения и координат тел .

Любое тело подвержено земному притяжению и воздействию сил упругости. Такое взаимодействие объектов между собой наблюдается повсеместно, поэтому тела находятся в постоянном движении, меняют свои координаты.

Установлено, чем выше от поверхности земли находится предмет, чем больше его масса, тем большим показателем данной величины оно обладает .

Таким образом, зависит потенциальная энергия от массы (m) , высоты (h). Величина g – ускорение свободного падения, равное 9,81 м/сек2. Функция расчета ее количественного значения выглядит так:

Единицей измерения этой физической величины в системе СИ считается джоуль (1 Дж) . Именно столько нужно затратить сил, чтобы переместить тело на 1 метр, приложив при этом усилие в 1 ньютон.

Важно! Джоуль как единица измерения утвержден на Международном конгрессе электриков, который проходил в 1889 году. До этого времени эталоном измерения была Британская термическая единица BTU, используемая в настоящее время для определения мощности тепловых установок.

Основы сохранения и превращения

Из основ физики известно, что суммарная сила любого объекта, независимо от времени и места его пребывания, всегда остается величиной постоянной, преобразуются лишь ее постоянные составляющие (Еп) и (Ек).

Переход потенциальной энергии в кинетическую и обратно происходит при определенных условиях.

Например, если предмет не перемещается, то его кинетическая энергия равна нулю, в его состоянии будет присутствовать только потенциальная составляющая.

И наоборот, чему равна потенциальная энергия объекта, например, когда он находится на поверхности (h=0)? Конечно, она нулевая, а Е тела будет состоять только из ее составляющей Ек.

Но потенциальная энергия – это мощность движения . Стоит только системе приподняться на какую- то высоту, после чего его Еп сразу начнет увеличиваться, а Ек на такую величину, соответственно, уменьшаться. Эта закономерность просматривается в вышеуказанных формулах (1) и (2).

Для наглядности приведем пример с камнем либо мячом, которые подбрасывают. В процессе полета каждый из них обладает и как потенциальной, так и кинетической составляющей. Если одна увеличивается, то другая на такую же величину уменьшается.

Полет предметов вверх продолжается лишь до тех пор, пока хватит запаса и сил у составляющей движения Ек. Как только она иссякла, начинается падение.

А вот чему равна потенциальная энергия предметов в самой верхней точке, догадаться нетрудно, она максимальная .

При их падении происходит все наоборот. При касании с землей уровень кинетической энергии равен максимуму.

Кинетической энергией системы называется скалярная величина Т, равная сумме кинетических энергий всех точек системы.

Кинетическая энергия является характеристикой и поступательного, и вращательного движений системы. Главное отличие величины Т от введенных ранее характеристик Q и Ко состоит в том, что кинетическая энергия является величиной скалярной и притом существенно положительной. Поэтому она не зависит от направлений движения частей системы и не характеризует изменений этих направлений.

Отметим еще следующее важное обстоятельство. Внутренние силы действуют на части системы по взаимно противоположным направлениям. По этой причине они, как мы видели, не изменяют векторных характеристик . Но если под действием внутренних сил будут изменяться модули скоростей точек системы, то при этом будет изменяться и величина Т.

Следовательно, кинетическая энергия системы отличается от величин и тем, что на ее изменение влияет действие и внешних, и внутренних сил.

Если система состоит из нескольких тел, то ее кинетическая энергия равна сумме кинетических энергий этих тел.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение. В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости центра масс. Следовательно, для любой точки и формула (41) дает

Таким образом, кинетическая энергия тела при поступательном движении равна половине произведения массы тела на квадрат скорости центра масс.

2. Вращательное движение. Если тело вращается вокруг какой-нибудь оси (см. рис. 295), то скорость любой его точки где - расстояние точки от оси вращения, а - угловая скорость тела. Подставляя это значение в формулу (41) и вынося общие множители за скобки, получим

Величина, стоящая в скобках, представляет собой момент инерции тела относительно оси . Таким образом, окончательно найдем

т. е. кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение. При этом движении скорости всех точек тела в каждый момент времени распределены так, как если бы тело вращалось вокруг оси, перпендикулярной плоскости движения и проходящей через мгновенный центр скоростей Р (рис. 303). Следовательно, по формуле (43)

где - момент инерции тела относительно названной выше оси; - угловая скорость тела.

Величина в формуле (43) будет переменной, так как положение центра Р при движении тела все время меняется. Введем вместо постоянный момент инерции относительно оси, проходящей через центр масс С тела. По теореме Гюйгенса (см. § 103) , где . Подставим это выражение для в (43).

Учитывая, что точка Р - мгновенный центр скоростей и, следовательно, , где - скорость центра масс С, окончательно найдем

Следовательно, при плоскопараллельном движении кинетическая энергия тела равна энергии поступательного движения со скоростью центра масс, сложенной с кинетической энергией вращательного движения вокруг центра масс.

4. Общий случай движения. Если выбрать центр масс С тела в качестве полюса (рис. 304), то движение тела в общем случае будет слагаться из поступательного со скоростью полюса и вращательного вокруг мгновенной оси СР, проходящей через этот полюс (см. § 63). При этом, как показано в § 63, скорость любой точки тела слагается из скорости полюса и скорости, которую точка получает при вращении тела вокруг полюса (вокруг оси СР) и которую мы обозначим При этом по модулю где - расстояние точки от оси СР, а - угловая скорость тела, которая (см. § 63) не зависит от выбора полюса. Тогда

Подставляя это значение в равенство (41) и учитывая, что найдем

где общие множители сразу вынесены за скобки.

В полученном равенстве первая скобка дает массу М тела, а вторая равна моменту инерции тела относительно мгновенной оси СР.

Величина же , так как она представляет собой количество движения, получаемое телом при его вращении вокруг оси СР, проходящей через центр масс тела (см. § 110).

В результате окончательно получим

Таким образом, кинетическая энергия тела в общем случае движения (в частности, и при плоскопараллельном движении) равна кинетической энергии поступательного движения со скоростью центра масс, сложенной с кинетической энергией вращательного движения вокруг оси, проходящей через центр масс.

Если за полюс взять не центр масс С, а какую-нибудь другую точку А тела и мгновенная ось АР при этом не будет все время проходить через центр масс, то для этой оси и формулы вида (45) мы не получим.

Рассмотрим примеры.

Задача 136. Вычислить кинетическую энергию катящегося без скольжения сплошного цилиндрического колеса массой М, если скорость его центра равна (см. рис. 308, а).

Решение Колесо совершает плоскопараллелыюе движение. По формуле (44) или (45)

Считаем колесо сплошным однородным цилиндром; тогда (см. § 102) , где R - радиус колеса. С другой стороны, так как точка В является для колеса мгновенным центром скоростей, то откуда Подставляя все эти значения, найдем

Задача 137. В детали А, движущейся поступательно со скоростью имеются направляющие, по которым со скоростью v перемещается тело В массой . Зная угол а (рис. 305), определить кинетическую энергию тела В.