В одной коробке вся вселенная помещается загадка. Сколько всего элементарных частиц во Вселенной? За него вы и премию получили

о Микромире, Микрокосме, об Атомах

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

МИКРОКОСМ (от микро... и космос) - человек как подобие, отражение, зеркало, символ Вселенной - макрокосма. Учение о микрокосме было распространено в древнегреческой философии (Платон, перипатетическая школа, стоицизм), философии Возрождения (Николай Кузанский, Дж. Бруно, Т. Кампанелла, Парацельс), оно присуще пантеистическим учениям И. В. Гете и немецкого романтизма. В философии Г. В. Лейбница - монада .

МОНАДА (от греч. monas - род. п. monados - единица, единое) - понятие, обозначающее в различных философских учениях основополагающие элементы бытия: число в пифагореизме; единое в неоплатонизме; единое начало бытия в пантеизме Дж. Бруно; психически активная субстанция в монадологии Г. В. Лейбница, воспринимающая и отражающая др. монаду и весь мир ("Монада - зеркало Вселенной").

МАКРОКОСМ(ОС) (от макро... и космос) - Вселенная, универсум, мир в целом, в отличие от микрокосм(ос)а (человека).

Микрургия (от микро... и греч. érgon - работа), микродиссекция (от лат. dissectio - рассечение) - совокупность методических приёмов и технических средств, позволяющих производить под микроскопом операции на очень мелких объектах - микроорганизмах, простейших, клетках многоклеточных организмов или внутриклеточных структурах (ядрах, хромосомах и др.). Микрургия включает в себя также микроизоляции, микроинъекции, микровивисекционные и микрохирургические вмешательства (например, операции на глазном яблоке). Большое развитие Микрургия получила в 20 в. в связи с усовершенствованием микроманипуляторов и специальных микроинструментов - игл, микроэлектродов и др.

Объект помещают в камеру, заполненную физиологическим раствором, вазелиновым маслом, сывороткой крови или другой средой. При помощи Микрургии возможно выделение отдельных клеток , в том числе микробных, разрезание их на части, удаление и пересадка ядер и ядрышек, разрушение отдельных участков и органоидов клетки, введение в клетку микроэлектродов и химических веществ, извлечение из неё органоидов. Микрургия позволяет изучать физико-химические свойства клетки, её физиологическое состояние, пределы реактивности. Особое значение Микрургия приобретает в связи с возможностью пересадки ядер соматических клеток в яйцевые и обратно. Так, Дж. Гёрдон (1963) перенёс ядро из эпителиальной клетки кишечника земноводного в яйцевую клетку того же вида. При Микрургии резко нарушаются строение и жизнедеятельность клетки, поэтому необходим строгий контроль физиологичности производимых операций.

Микро..., микр... (от греч. mikrós - малый, маленький):

1) составная часть сложных слов, указывающая (в противоположность макро...) на малые размеры или малую величину чего-либо (например, микроклимат, микролит, микроорганизмы).

2) Приставка для образования наименований дольных единиц, по размеру равных одной миллионной доле исходных единиц. Обозначения: русское мк, международное m. Пример: 1 мксек (микросекунда) = 10-6сек.

МАКРОМИР И МИКРОМИР

МАКРОМИР И МИКРОМИР

МАКРОМИР И МИКРОМИР - две основные области материального мира, кардинально различающиеся характером своих закономерностей. Противопоставление макромира и микрокосмоса восходит к древнейшим натурфилософским концепциям макрокосмоса и микрокосмоса. Современные представления о макромире и микромире сложились в ходе становления квантовой теории и ее осмысления: объекты исследования доквантовой физики составляют макромир, а объекты, на базе которых разрабатывается , составляют микромир. Квантовая создавалась как теория структуры и свойств атома и процессов атомного масштаба; ныне же она лежит в основе физики элементарных частиц. С точки зрения представлений классической физики, законы квантовой теории оказались весьма странными и парадоксальными, что и определило концепции об особом своеобразном физическом мире. Высказывается , что квантовая теория представляет такой “плод человеческой , который более всякого другого научного достижения углубил и расширил наше мира” (Вайскопф В. Физика в двадцатом столетии. М., 1977, с. 34). Важнейшими особенностями квантовых представлений, позволяющими говорить об особом мире физических явлений, являются корпускулярно-волновой , принципиально вероятностный процессов микромира и относительность свойств микрообъекта, фиксируемых на макроуровне.

Исторически проникновение науки в область микропроцессов приводило к разработке научных теорий большой степени общности. Проникновение в структуру вещества привело к разработке классической статистической физики, а глубинных структур наследственности - к созданию генной теории. Познание атома породило квантовую теорию - наиболее фундаментальную в современной физике. “Микрофизика вчера, сегодня и, нужно думать, завтра, - как отметил отечественный физик В. Гинзбург, - была, есть и будет передним краем физики и всего естествознания” (Гинзбург В. О перспективах развития физики и астрофизики в конце 20 в. - Физика 20 в. Развитие и перспективы. М-, 1984, с. 299). Представления о макромире и микромире взаимодополняют и взаимообусловливают друг друга. Знание свойств и законов микромира позволяет раскрыть свойства и структуры объектов макромира, а макромира позволяет раскрыть богатство внутренних возможностей объектов микромира.

Развитие физики микромира преобразует и основные формы теоретического выражения знаний. В частности, при переходе от классической физики к физике микромира произошли изменения в нашем понимании элементарного - переход от представлений о бесструктурных атомах (материальных точек) к представлениям об элементарных событиях как о некоторых далее неразложимых (бесструктурных) актах взаимодействия. И , и особенно квантовая теория в своих построениях исходят из понятия события, пред

ставляющего собою бесструктурный элементарный . Как сказал отечественный физик А. Д. Александров, имея в виду структуру теории относительности: “Простейший элемент мира - это то, что называется событием. Оно представляет собою “точечное” вроде мгновенной вспышки точечной лампы или, пользуясь наглядными представлениями о пространстве и времени, явление, протяжением которого в пространстве и во времени можно пренебречь. Словом, аналогично точке в геометрии, и, подражая определению точки, данному Эвклидом, можно сказать, что событие - это явление, часть которого есть , оно есть “атомарное” явление. Всякое явление, всякий представляется как некоторая связная совокупность событий. С этой точки зрения весь рассматривается как событий” (Александров А. Д. О философском содержании теории относительности. - Эйнштейн и философские проблемы физики 20 в. М., 1979, с. 113). Анализу перехода от языка объектов к языку событий в ходе становления современной физики принципиальное придавал Б. Рассел (см.: Рассел Б. Человеческое . М., 1957. с. 358 и 497). Можно, т. о., утверждать, что мир макрофизики есть мир, построенный из объектов, а мир микрофизики есть мир, образованный из событий.

В современной физике элементарной сущности (как далее неразложимого, бесструктурного элемента) во многом остается открытой. Можно предположить, что при дальнейшем проникновении науки на глубинные уровни строения материи о простейшем, бесструктурном элементе изменит свой . Исходные явления физического мира с самого начала следует рассматривать как сложное, т. е. системным образом; при этом само системы выступает как первичное, фундаментальное. Тем самым изменится и характер теоретических построений в фундаментальных областях физики.

Ю. В. Сачков

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .


Смотреть что такое "МАКРОМИР И МИКРОМИР" в других словарях:

    И микромир две специфические области объективной реальности, различающиеся уровнем структурной организации материи. Сфера макроявления это обычный мир, в к ром живет и действует человек (планеты, земные тела, кристаллы, большие молекулы и др.).… … Википедия

    М. Мир очень больших величин. Ant: микромир Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …

    М. Мир очень малых величин. Ant: макромир Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    Мухосранск вымышленный населённый пункт, обозначающий «провинциальный город, глушь, глухомань». Будучи квазитопонимом, характеризует описываемый объект с негативной стороны, указывая как на удалённость его от центра, так и «на… … Википедия

    мировоззрение - МИРОВОЗЗРЕНИЕ систематическое единство многообразия обобщенных, непосредственно связанных с осознаваемыми интересами людей убеждений относительно сущности природных или социальных явлений, или же их совокупности. Несмотря на этимологию… … Энциклопедия эпистемологии и философии науки

    - (греч. , от мир, Вселенная и, рождение), в совр. понимании раздел астрономии, изучающий происхождение космич. объектов и систем. Проблемы происхождения и эволюции Вселенной в целом изучает космология. Древнейшие представления о… … Философская энциклопедия

    Запрос «Эйнштейн» перенаправляется сюда; см. также другие значения. Альберт Эйнштейн Albert Einstein … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    Альберт Эйнштейн Albert Einstein Дата рождения: 14 марта 1879 Место рождения … Википедия

Книги

  • Концепции современного естествознания , Гусев Дмитрий Алексеевич. Что такое наука? Когда и где она появилась? Какую роль она играет в жизни человека и общества? Почему под наукой в первую очередь подразумевается естествознание? Какпроисходит научное…
ТЕМА-4
1 . Определите понятия: мегамир, макромир, микромир, наномир. Связаны ли они? Определите понятия: мегамир, макромир, микромир, наномир. Связаны ли они? Мегамир – это планеты, звездные комплексы, галактики, мегагалактики – мир огромных космических масштабов и скоростей, расстояние, в котором измеряется Светловыми годами, а время существования космических объектов – миллионами и миллиардами лет.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время – в секундах,минутах, часах, годах.

Микромир - это молекулы, атомы, элементарные частицы – мир предельно малых, непосредственно ненаблюдаемых микрообъектов, пространсвенная размерность которых исчесляется от 10-8 до 10-16см, а время жизни – от бесконечности до 10 – 24 с.

Наномиир - это часть реального, привычного нам мира, только часть эта настолько малых размеров, что увидеть ее с помощью обычного человеческого зрения совершенно невозможно.

Они тесно связаны между собой.

^ 2. Дайте определение вакуума.

Ва́куум (от лат. vacuum - пустота) - среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Также вакуумом называют состояние газа, для которого средняя длина пробега его молекул сравнима с размерами сосуда или больше этих размеров.

3. Что такое наномир? Что такое нанотехнология? Чем отличается наномир от нанотехнологий?

Нанотехнология – междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путем контролируемого манипулирования отдельными атомами и молекулами.

ННаномиир - это часть реального, привычного нам мира, только часть эта настолько малых размеров, что увидеть ее с помощью обычного человеческого зрения совершенно невозможно.

Нанотехнология относится именно к микромиру, хотя нанометры это 10 в -9 степени метра. А наномир – это микро-микромир. Структура наномира – это структура радиоэфира Фарадея-Максвелла.ЕЕ элементы имеют размер 10 в – 35 степени метра, т.е на 25 порядков мельче атома водорода.

4. Где используется вакуум?

4 . Экспериментальные исследования испарения и конденсации, поверхностных явлений, некоторых тепловых процессов, низких температур, ядерных и термоядерных реакций осуществляются в вакуумных установках. Основной инструмент современной ядерной физики - ускоритель заряженных частиц - немыслим без вакуума. Вакуумные системы применяются в химии для изучения свойств чистых веществ, изучения состава и разделения компонентов смесей, скоростей химических реакций.Техническое применение вакуума непрерывно расширяется, но с конца прошлого века и до сих пор наиболее важным его применением остается электронная техника. В электровакуумных приборах вакуум является конструктивным элементом и обязательным условием их функционирования в течение всего срока службы. Низкий и средний вакуум используется в осветительных приборах и газоразрядных устройствах. Высокий вакуум - в приемно-усилительных и генераторных лампах. Наиболее высокие требования к вакууму предъявляются при производстве электронно-лучевых трубок и сверхвысокочастотных приборов. Для работы полупроводникового прибора вакуум не требуется, но в процессе его изготовления широко используется вакуумная технология. Особенно широко вакуумная техника применяется в производстве микросхем, где процессы нанесения тонких пленок, ионного травления, электронолитографии обеспечивают получение элементов электронных схем субмикронных размеров.В металлургии плавка и переплав металлов в вакууме освобождает их от растворенных газов, благодаря чему они приобретают высокую механическую прочность, пластичность и вязкость. Плавкой в вакууме получают безуглеродистые сорта железа для электродвигателей, высокоэлектропроводную медь, магний, кальций, тантал, платину, титан, цирконий, бериллий, редкие металлы и их сплавы. В производстве высококачественных сталей широко применяется вакуумирование. Спекание в вакууме порошков тугоплавких металлов, таких, как вольфрам и молибден, является одним из основных технологических процессов порошковой металлургии. Сверхчистые вещества, полупроводники, диэлектрики изготавливаются в вакуумных кристаллизационных установках. Сплавы с любым соотношением компонентов могут быть получены методами вакуумной молекулярной эпитаксии. Искусственные кристаллы алмаза, рубина, сапфира получают в вакуумных установках. Диффузионная сварка в вакууме позволяет получать не­разъемные герметичные соединения материалов с сильно разли чающимися температурами плавления. Таким способом соединяют керамику с металлом, сталь с алюминием и т. д. Высококачественное соединение материалов с однородными свойствами обеспечивает электронно-лучевая сварка в вакууме. В машиностроении вакуум применяется при исследованиях процессов схватывания материалов и сухого трения, для нанесения упрочняющих покрытий на режущий инструмент и износостойких покрытий на детали машин, захвата и транспортирования деталей в автоматах и автоматических линиях.Химическая промышленность применяет вакуумные сушильные аппараты при выпуске синтетических волокон, полиамидов, аминопластов, полиэтилена, органических растворителей. Вакуум-фильтры используются при производстве целлюлозы, бумаги, смазочных масел. В производстве красителей и удобрений применяются кристаллизационные вакуумные аппараты.В электротехнической промышленности вакуумная пропитка как самый экономичный метод широко распространена в производстве трансформаторов, электродвигателей, конденсаторов и кабелей. Повышаются срок службы и надежность при работе в вакууме переключающих электрических аппаратов.Оптическая промышленность при производстве оптических и бытовых зеркал перешла с химического серебрения на вакуумное алюминирование. Просветленная оптика, защитные слои и интерференционные фильтры получают напылением тонких слоев в вакууме.В пищевой промышленности для длительного хранения и кон­сервирования пищевых продуктов используют вакуумную сушку вымораживанием. Расфасовка скоропортящихся продуктов, осуществляемая в вакууме, удлиняет сроки хранения фруктов и овощей. Вакуумное выпаривание применяется при производстве сахара, опреснении морской воды, солеварении. В сельском хозяйстве широко распространены вакуумные доильные аппараты. В быту пылесос стал нашим незаменимым помощником.На транспорте вакуум используется для подачи топлива в карбюраторах, в вакуумных усилителях тормозных систем автомобилей. Имитация космического пространства в условиях земной атмосферы необходима для испытания искусственных спутников и ракет.В медицине вакуум применяется для сохранения гормонов, лечебных сывороток, витаминов, при получении антибиотиков, анатомических и бактериологических препаратов

^ 5. Определите и поясните понятие: ТЕХНОЛОГИЯ.

Технология - комплекс организационных мер, операций и приемов, направленных на изготовление, обслуживание, ремонт и/или эксплуатацию изделия с номинальным качеством и оптимальными затратами.При этом:- под термином изделие следует понимать любой конечный продукт труда (материальный, интеллектуальный, моральный, политический и т. п.);- под термином номинальное качество следует понимать качество прогнозируемое или заранее заданное, например, оговоренное техническим заданием и согласованное техническим предложением;- под термином оптимальные затраты следует понимать минимально возможные затраты не влекущие за собой ухудшение условий труда, санитарных и экологических норм, норм технической и пожарной безопасности, сверхнормативный износ орудий труда, а также финансовых, экономических, политических и пр. рисков.

6. Дайте определение физического вакуума.

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой . Квантовая теория поля утверждает, что, в согласии с принципом неопределённости , в физическом вакууме постоянно рождаются и исчезают виртуальные частицы : происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов . Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов ; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов ) является одной из главных основ инфляционной теории Большого взрыва .

7. Фуллере́н, бакибо́л или букибо́л - молекулярное соединение, принадлежащее классу аллотропных форм углерода (другие - алмаз, карбин и графит) и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.

Фуллери́т (англ. fullerite) - это молекулярный кристалл, в узлах решётки которого находятся молекулы фуллерена.

Кристаллы фуллерита C60

Крупнокристаллический порошок фуллерита C60 в растровом электронном микроскопе

При нормальных условиях (300 К) молекулы фуллерена образуют гранецентрированную кубическую (ГЦК) кристаллическую решётку. Период такой решётки составляет а = 1,417 нм, средний диаметр молекулы фуллерена С60 составляет 0,708 нм, расстояние между соседними молекулами С60 равно 1,002 нм.[источник не указан 258 дней] Плотность фуллерита составляет 1,7 г/см3, что значительно меньше плотности графита (2,3 г/см3), и, тем более, алмаза (3,5 г/см3). Это связано с тем, что молекулы фуллерена, расположенные в узлах решётки фуллерита, полые.

Логично предположить, что вещество, состоящее из столь удивительных молекул, будет обладать необычными свойствами. Кристалл фуллерита имеет плотность 1,7 г/см3, что значительно меньше плотности графита (2,3 г/см3) и тем более алмаза (3,5 г/см3). Да это и понятно - ведь молекулы фуллеренов полые.

Фуллерит не отличается высокой химической активностью . Молекула C60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1200 К. Однако в присутствии кислорода уже при 500 К наблюдается значительное окисление с образованием CO и CO2 . Процесс, продолжающийся несколько часов, приводит к разрушению ГЦК-решетки фуллерита и образованию неупорядоченной структуры, в которой на исходную молекулу C60 приходится 12 атомов кислорода. При этом фуллерены полностью теряют свою форму. При комнатной температуре окисление происходит только при облучении фотонами с энергией 0,5 - 5 эВ. Вспомнив, что энергия фотонов видимого света находится в диапазоне 1,5 - 4 эВ, приходим к выводу: чистый фуллерит необходимо хранить в темноте.

Практический интерес к фуллеренам лежит в разных областях. С точки зрения электронных свойств, фуллерены и их производные в конденсированной фазе можно рассматривать как полупроводники n-типа (с шириной запрещенной зоны порядка 1,5 эВ в случае C60). Они хорошо поглощают излучение в УФ и видимой области. При этом сферическая сопряженная -система фуллеренов обуславливает их высокие электроноакцепторные способности (сродство к электрону C60 составляет 2,7 эВ, во многих высших фуллеренах оно превышает 3 эВ и может быть еще выше в некоторых производных). Все это обуславливает интерес к фуллеренам с точки зрения их применения в фотовольтаике, активно ведется синтез донорно-акцепторных систем на основе фуллеренов для применения в солнечных батареях (известны примеры с КПД 5,5%), фотосенсорах и других устройствах молекулярной электроники. Также широко исследуются, в частности, биомедицинские применения фуллеренов в качестве противомикробных и противовирусных средств, агентов для фотодинамической терапии и т.д.

8. Ва́куум (от лат. vacuum - пустота) - пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлениях значительно ниже атмосферного. На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

9. Алмаз. Алма́з (от араб. ألماس‎‎, ’almās,которое идёт через арабск. из др.-греч. ἀδάμας - «несокрушимый») - минерал, кубическая аллотропная форма углерода. При нормальных условиях метастабилен т.е. может существовать неограниченно долго. В вакууме или в инертном газе при повышенных температурах постепенно переходит в графит

Решетка алмаза очень прочная: атомы углерода находятся в ней по узлам двух кубических решеток с центрированными гранями, очень плотно вставленных одна в другую.

Графит по составу тот же углерод, но структура кристаллической решетки у него не такая, как у алмаза. В графите атомы углерода расположены слоями, внутри которых соединение атомов углерода похоже на пчелиные соты. Эти слои связаны между собой гораздо слабее, чем атомы углерода в каждом слое. Поэтому графит легко расслаивается на чешуйки, и им можно писать. Применяется он для изготовления карандашей, а также в качестве сухой смазки, пригодной для деталей машин, работающих при высокой температуре.

Общеизвестно, что самый твердый в мире материал - алмаз. До настоящего времени так и было, но теперь ученые утверждают, что есть в природе вещество, более твердое, чем алмаз. Редкий минерал формируется во время извержений вулканов.

Редко встречающееся в природе соединение под названием лонсдейлит так же, как и алмаз, состоит из атомов углерода, будучи при этом на 58% более твердым минералом, чем алмаз.

Материал под названием вюрцит азотистого бора оказался тверже обычного алмаза на 18%, а лонсдейлита или гексагонального алмаза - на 58%.

Редкий минерал лонсдейлит формируется при падении на землю метеорита с содержанием графита, а вюрцит азотистого бора рождается во время извержений вулканов.

Если предположения ученых подтвердятся, то самым полезным материалом из трех может оказаться именно он, поскольку при высоких температурах вюрцит азотистого бора остается более прочным. Материал можно будет использовать в режущих и сверлящих инструментах при высоких температурах.

Парадоксально, но факт: своей твердостью вюрцит азотистого бора обязан гибкости атомарных связей. При оказании давления на структуры материала некоторые атомарные связи перестраиваются на 90% для ослабления давления на материал.

Абсолютно новый тип алмазов получился благодаря раскрытию условий образования метеоритных алмазов

Материя - это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.

Современная наука выделяет в мире три структурных уровня.

Микромир - это молекулы, атомы, элементарные частицы -- мир предельно малых, непосредственно не наблю-даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни -- от бесконечно-сти до 10 -24 с.

Макромир -- мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот-носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время -- в секундах, минутах, часах, годах.

Мегамир -- это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоро-стей, расстояние в котором измеряется световыми годами, а время существования космических объектов -- миллионами и мил-лиардами лет.

И хотя на этих уровнях действуют свои специфические зако-номерности, микро-, макро - и мегамиры теснейшим образом взаи-мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир.

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой-ства атома. В XIX в. Д. И. Менделеев построил систему хими-ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен-тов. В 1895 г. Дж. Томсон открыл электрон - отрица-тельно заряженную частицу, входящую в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.

Выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы - простейшие объекты микромира, взаимодействующие как единое целое. Известно более 300 разновидностей. В первой половине ХХ в. были открыты фотон, протон, нейтрон, позднее - нейтрино, мезоны и другие. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа. Все элементарные частицы, абсолютно нейтральны, имеют свои античастицы - элементарные частицы, обладающие теми же характеристиками, но отличающиеся знаками электрического заряда. При столкновении частиц происходит их уничтожение (аннипиляция).

Стремительно возрастает количество открытых элементарных частиц. Их объединяют в «семейства» (мультиплеты), «роды» (супермультиплеты), «племена» (адроны, лептоны, фотоны и т.п.). Некоторые частицы группируются по принципу симметрии. Например, триплет из трёх частиц (кварков) и триплет из трёх античастиц (антикварков). К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.

Микромир - это молекулы, атомы, элементарные частицы -- мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни -- от бесконечности до 10-24 с.

Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир - это что-то небольшое. В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

Микромир имеет свои особенности, которые можно выразить так:

  • 1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;
  • 2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.

Так как была установлена бессмысленность применения единиц измерения расстояния и веса по отношению к объектам микромира, то, естественно, потребовалось изобрести новые единицы измерения. Так, расстояния между ближайшими звездами и планетами измеряются не в километрах, а в световых годах. Световой год - это такое расстояние, которое солнечный свет проходит за один земной год.

Изучение микромира вместе с изучением мегамира способствовало крушению теории Ньютона. Таким образом, была разрушена механистическая картина мира.

В 1927 г. Нильс Бор вносит еще один свой вклад в развитие науки: он сформулировал принцип дополнительности. Причиной, послужившей для формулировки данного принципа, стала двойственная природа света (так называемый корпускулярно-волновой дуализм света). Сам же Бор утверждал, что появление данного принципа было связано с изучением микромира из макромира. В качестве обоснования этого он приводил следующее:

  • 1) предпринимались попытки объяснить явления микромира посредством понятий, которые были выработаны при изучении макромира;
  • 2) в сознании человека возникали сложности, связанные с разделением бытия на субъект и объект;
  • 3) при наблюдении и описании явлений микромира мы не можем абстрагироваться от явлений, относящихся к макромиру наблюдателя, и средств наблюдения.

Нильс Бор утверждал, что «принцип дополнительности» подходит как для исследования микромира, так и для исследования в других науках (в частности, в психологии).

В заключение данного вопроса стоит сказать, что микромир является основой нашего макромира. Также в науке можно выделить «микромикромир». Или, по-другому, наномир. Наномир, в отличие от микромира, является носителем света, точнее, всего спектра электромагнитных процессов, фундаментом, поддерживающим структуру элементарных частиц, фундаментальных взаимодействий и большинства явлений, известных современной науке.

Таким образом, предметы, окружающие нас, а также само тело человека не являются единым целым. Все это состоит из «частей», т. е. молекул. Молекулы, в свою очередь, также делятся на более мелкие составляющие части - атомы. Атомы тоже, в свою очередь, делятся на еще более мелкие составляющие части, которые именуются элементарными частицами.

Всю эту систему можно представить как дом или здание. Здание не является цельным куском, т. к. оно построено, допустим, с помощью кирпичной кладки, а кирпичная кладка состоит непосредственно из кирпича и раствора цемента. Если же начнет разрушаться кирпич, то, естественно, рухнет и все строение. Так и наша Вселенная - разрушение ее, если это произойдет вообще, также начнется с наномира и микромира.

Макромир.

Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира (т. е. атомов и молекул). Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека. И, что естественно, человек является самой главной составляющей макромира.

Что же такое человек? Древний античный философ Платон как-то сказал, что человек - это двуногое животное без перьев. В ответ на это его оппоненты принесли ему ощипанного петуха и сказали: вот, Платон, твой человек! Изучение человека как объекта макромира с точки зрения его физических данных неправильно.

Прежде всего отметим, что человек - это целая совокупность различных систем: кровеносной, нервной, мышечной, костной системы и т. д. Но помимо этого, одной из составляющих человека является его энергия, которая тесно связана с физиологией. Причем энергия может рассматриваться в двух смыслах:

  • 1) как движение и способность производить работу;
  • 2) «подвижность» человека, его активность.

Также энергию называют аурой или ци. Энергию (или ауру) можно, как и физическое тело, развивать и укреплять.

Нервная система, мышечная система, другие системы, энергия - еще не все составляющие человека. Самой главной такой «составляющей» является сознание. Что такое сознание? Где оно находится? Можно ли его потрогать, подержать в руках, посмотреть на него?

До сих пор на эти вопросы ответов нет, да и, скорее всего, не будет. Сознание - это нематериальный объект. Сознание нельзя взять и отделить от человека - оно неотделимо.

Но вместе с этим можно попытаться выделить ингредиенты, которые составляют человеческое сознание:

  • 1) интеллект;
  • 2) подсознание;
  • 3) сверхсознание.

Интеллект - это мыслительная и умственная способность человека. Психологи утверждают, что главной функцией интеллекта является память. Действительно, мы не можем себе представить, что же было бы с нами, если бы памяти у нас не было вообще. Просыпаясь каждое утро, человек бы начинал соображать: кто я? Что я здесь делаю? Кто меня окружает? и т. д.

К подсознанию относятся все наши «рабочие» навыки. Навыки складываются из многократно повторяемых и однообразных действий. Для того чтобы проиллюстрировать, что такое навыки, достаточно вспомнить, что мы умеем писать и читать. Видя какой-то текст, мы не думаем: а это что за буква, а это что за знак? Мы просто складываем буквы в слова, а слова в предложения.

Сверхсознание. К сверхсознанию относится прежде всего душа человека.

Душа - это также нематериальный объект (ее нельзя ни увидеть, ни подержать в руках). Совсем недавно было заявлено, что ученые узнали, сколько весит душа. Некоторые ученые утверждают, что в момент смерти человека его вес немного уменьшается, т. е. отлетает душа человека. Но данное утверждение необоснованно, так как какой разумный врач положит умирающего на весы и будет сидеть и ждать, когда же больной умрет? В клятве Гиппократа, которую дает каждый начинающий врач, говорится о том, чтобы не навредить человеку. Врач будет не сидеть, а спасать человеческую жизнь. И вообще узнать вес души нереально, так как нематериальные объекты не имеют никакого веса.

Человеческая душа - это религиозная ценность. Все мировые религии направлены на то, чтобы дать людям возможность спасти свою душу после смерти (т. е. жить вечно после физической смерти бренной оболочки души - тела человека). Борьбу за душу всегда ведут Добро и Зло. Например, в христианстве это Бог и Сатана.

Если микромир - это мир тех объектов, которые не подходят под единицы измерения человека, макромир - это мир объектов, которые сопоставимы с единицами измерения человека, то мегамир - это мир объектов, которые несоизмеримо больше человека.

Объектом естествознания является природа, то есть весь окружающий нас мир. Самым общим понятием, охватывающим весь материальный мир, является понятие "Вселенная. Оно может считаться эквивалентом понятия "природа". В более узком смысле под Вселенной понимается окружающий нас мегамир - совокупность макроскопических тел и их систем астрономического (то есть гигантского) масштаба. Макроскопические тела - это физические системы, состоящие из огромного количества частиц (атомов и молекул). Более конкретно, мегамир - это мировое пространство, небесные тела и их системы, космические газ, пыль, электромагнитные поля, космические элементарные частицы. Вселенную, рассматриваемую, как единое целое, подчиняющуюся общим законом, называют космосом. Значение слова "космос" в греческом языке - "порядок, гармония, красота". Это слово родственно слову "косметика", смысл которого "искусство украшать". Считается, что впервые Вселенную как гармоничную, упорядоченную систему назвал космосом древнегреческий ученый Пифагор. Понятие "космос" часто используют в качестве синонима понятия "Вселенная". В популярной литературе "космическое" очень часто противопоставляют "земному", хотя Земля тоже объект Вселенной.

Наблюдаемая область Вселенной называется Метагалактикой. Ее границы по мере совершенствования астрономических инструментов расширяются, но существует принципиальный предел, обусловленный конечностью скорости света. В настоящее время радиус Метагалактики равен 10 миллиардов световых лет, то есть расстоянию, которое электромагнитные волны проходят за 10 миллиардов лет (скорость света 300000 км/с).

Исследование мегамира тесно связано с космологией и космогонией.

Наука космология является очень молодой. Она родилась сравнительно недавно - в начале XX в. Можно выделить две главные причины рождения космологии. И, что интересно, обе причины связаны с развитием физики:

  • 1) Альберт Эйнштейн создает свою релятивистскую физику;
  • 2) М. Планк создает квантовую физику.

Квантовая физика изменила взгляды человечества на структуру пространства-времени и структуру физических взаимодействий.

Также очень важную роль сыграла теория А.А. Фридмана о расширяющейся Вселенной. Эта теория очень недолго оставалась недоказанной: только в 1929 г. ее доказал Э. Хаббл. Вернее, он не доказывал теорию, а обнаружил то, что Вселенная действительно расширяется. Причем следует отметить, что в то время причины расширения Вселенной установлены не были. Они были установлены гораздо позже, в наши дни. Они были установлены тогда, когда к ранней Вселенной применили результаты, полученные посредством изучения элементарных частиц в современной физике.

Космогония. Космогония - это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегоднякосмогонию можно разделить на две части:

  • 1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;
  • 2) звездная космогония.

Во 2-й половине XX в. в космогонии Солнечной системы утвердилась точка зрения, согласно которой Солнце и вся Солнечная система образовались из газо-пылевого состояния. Впервые такое мнение было высказано Иммануилом Кантом. В середине XVIII в. Кант написал научную статью, которая называлась: «Космогония, или попытка объяснить происхождение мироздания, образование небесных тел и причины их движения общими законами развития материи в соответствии с теорией Ньютона». Молодой ученый захотел написать эту работу, потому что он узнал: Прусская академия наук предложила конкурс на аналогичную тему. Но Кант не смог собраться с духом и издать свой труд. Спустя какое-то время он пишет вторую статью, которая называлась: «Вопрос о том, стареет ли Земля с физической точки зрения». Первая статья была написана в сложное время: Иммануил Кант уехал из родного Кенигсберга, пытаясь подработать домашним учителем. Не получив ничего ценного (кроме своих познаний), Кант возвращается домой и в 1754 г. издает эту статью. Обе работы позже были объединены в единый трактат, который был посвящен проблемам космологии.

Теорию Канта о происхождении Солнечной системы в дальнейшем стал развивать Лаплас. Француз подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности, учел основные характерные черты Солнечной системы.