Серебряные сплавы. Как отличить серебро от других металлов: мельхиора и белого золота

Материалы для ювелирных изделий Куманин Владимир Игоревич

10. Серебро и его сплавы

10. Серебро и его сплавы

Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.

Серебро – металл белого цвета. Считается вторым после золота благородным металлом. Полированное чистое серебро практически не изменяет свой цвет на воздухе. Однако под воздействием сероводорода воздуха на поверхности со временем образуется темный налет – сульфид серебра Ag2S. Серебро по сравнению с золотом и платиной менее устойчиво в кислотах и щелочах.

Серебро прекрасно деформируется как в холодном, так и в горячем состоянии. Хорошо полируется, имеет высокую отражательную способность.

Широкое применение серебра в фотографии и электротехнике обусловлено его уникальными физическими свойствами – самой высокой среди металлов электро– и теплопроводностью.

Несмотря на то что серебро сравнительно редкий элемент (его содержание в земной коре всего 7 х 10-6%, в морской воде еще меньше – 3 х 10-8%), оно на протяжении многих столетий широко используется в ювелирном производстве. Это в первую очередь связано с высокими декоративными свойствами серебра, а также с его уникальной пластичностью. Ювелирные изделия из серебра часто выполняются в технике скани – узора из тонкой проволоки. Из серебра изготавливают нити для серебряного шитья.

Для изготовления ювелирных изделий, а также в электронной промышленности используется как чистое серебро, так и его сплавы с медью и платиной.

Марки серебра и серебряных сплавов регламентированы ГОСТом 6836-80.

Стандарт распространяется на сплавы, предназначенные для электротехнических проводников и контактов, ювелирных изделий, струн музыкальных инструментов.

Согласно указанному стандарту, серебряные сплавы обозначают буквами Ср, вслед за которыми указываются лигатуры (Пт – платина, Пд – палладий, М – медь). Цифры после буквенного обозначения сплава указывают массовую долю серебра, выраженную в промилле (десятых долях процента) для чистого серебра и серебряно-медных сплавов (например, Ср999, СрМ91б, СрМ950 и т. д.), или массовую долю основных легирующих компонентов, выраженную в процентах (в этом случае цифра отделяется от буквенного обозначения не пробелом, а дефисом, например: СрПл-12 (12 % Pt, 88 % Ag), СрПд-40 (40 % Pd, 60 % Ag).

Все серебряные сплавы (ГОСТ 6836-80) могут быть использованы в электротехнической промышленности для производства контактных групп различного назначения. Для изготовления струн музыкальных инструментов используется сплав СрМ 950.

ГОСТ 6836-80 устанавливает марки серебра и серебряных сплавов с медью, платиной и палладием, предназначенных для изготовления полуфабрикатов изделий методом литья, горячей и холодной деформации. Прочие серебряные сплавы регламентируются отраслевыми стандартами или ТУ.

Химический состав серебра и его сплавов должен соответствовать нормам, указанным в таблицах 10.1, 10.2, 10.3 (ГОСТ 6836-80). Серебряно-платиновые сплавы, как более дорогие, в ювелирной промышленности применяются реже.

Таблица 10.1

Таблица 10.2

Серебряно-медные сплавы

Таблица 10.3

Серебряно-платиновые сплавы.

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Медь и сплавы Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.Чистая (красная) медь – прекрасный

Из книги Материаловедение: конспект лекций автора Алексеев Виктор Сергеевич

ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

Из книги Художественная обработка металла. Драгоценные металлы. Сплавы и добыча автора Мельников Илья

ЛЕКЦИЯ № 7. Железоуглеродистые сплавы 1. Диаграмма железо-цементит Диаграмма железо-цементит охватывает состояние железоуглеродистых сплавов, которые содержат до 6,67 % углерода. Рис. 7. Диаграмма состояния железоуглеродистых сплавов (сплошные линии – система Fe-Fe 3 C;

Из книги Материалы для ювелирных изделий автора Куманин Владимир Игоревич

2. Медные сплавы Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее

Из книги Современные методы обеззараживания воды автора Хохрякова Елена Анатольевна

3. Алюминиевые сплавы Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.По распространенности в природе алюминий занимает третье

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

4. Титановые сплавы Титан – металл серебристо-белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок

Из книги автора

5. Цинковые сплавы Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.Цинк – металл светло-серо-голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до

Из книги автора

Серебро Серебро – химический элемент 1 группы периодической системы элементов Менделеева. Атомный номер 47. Атомная масса 107,868. Валентность 1;2. Плотность10500 кг/м3.Серебро представляет собой белый, пластичный, тягучий и ковкий металл.Температура плавления 960,5°С, температура

Из книги автора

Сплавы золота Для изготовления ювелирных и других изделий далеко не всегда используют чистые металлы. Происходит это из-за высокой стоимости драгоценных металлов, недостаточной твердостью их и износоустойчивости, поэтому на практике чаще всего употребляют сплавы,

Из книги автора

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.Сплавы меди с цинком,

Из книги автора

8. Сплавы на основе алюминия Алюминиевые сплавы классифицируют по технологии изготовления (деформируемые и литейные), способности к термической обработке (упрочняемые и неупрочнямые) и свойствам (рис. 8.1). Рис. 8.1. Диаграмма состояния алюминий – легирующий элемент

Из книги автора

10.1. Двухкомпонентные сплавы серебра В ювелирной промышленности в основном используются сплавы на основе серебра, которые относятся к системе Ag – Си.Диаграмма состояния сплавов системы Ag – Си показана на рис. 3.7.Данная диаграмма относится к эвтектическим диаграммам с

Из книги автора

11. Золото и его сплавы Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.Золото – металл желтого

Из книги автора

5.1. Серебро Серебро – химический элемент, относится к благородным металлам, обозачается символом Ag (от лат. Silver – светлый, белый, англ. Argentum, франц. Argent, нем. Silber). Имеет порядковый номер 47, атомный вес – 107,8, валентность – I. II, плотность – 10,5 г/см3, температура плавления – 960,5

Из книги автора

46. Магний и его сплавы Магний является химически активным металлом: образующаяся на воздухе оксидная пленка МдО в силу более высокой плотности, чем у самого магния, растрескивается и не имеет защитных свойств; порошок и стружка магния легко воспламеняются; горячий и

Из книги автора

47. Титан и его сплавы Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,

Добавить сайт в закладки

Характеристика разных сплавов серебра и меди

Серебро любили и любят во всем мире и зачастую предпочитают его более ценному золоту. Из этого красивого светлого металла на протяжении веков делали разные вещи: столовые приборы, подсвечники, шкатулки и др. Однако наибольшее распространение он получил в ювелирном деле. Опытные мастера задействовали всю свою фантазию, чтобы изготовить из драгоценного металла замысловатые кольца, серьги, браслеты, колье и подвески для украшения тел королей, принцесс и богатых граждан. В наши дни серебро считается «женским» металлом, поскольку изделия из него больше носят представительницы прекрасного пола. Но часто серебряные цепочки можно заметить и на мужских шеях.

Ювелирные украшения из чистого серебра может позволить себе не каждый, так как они имеют высокую стоимость. К тому же металл высшей пробы непрактичен. Он мягкий, поэтому легко царапается. Изготовленные из него ажурные ювелирные изделия при ежедневной носке быстро теряют выразительность рельефа и уже не так красивы, как раньше. Поэтому в ювелирном деле используют сплавы серебра с другими металлами (лигатуры). Разные виды сплавов придают драгоценному материалу твердость, увеличивают его износоустойчивость. Благодаря лигатурам современные ювелиры могут выполнить серебряные украшения в сложнейшей технике исполнения. Какие же существуют сплавы серебра?

Влияние металлов на качество сплава

В современном мире к жидкому серебру в качестве общепринятой лигатуры добавляют медь, считается, что эти 2 металла хорошо взаимодействуют друг с другом.

Вводят в сплавы вместе с медью или без нее также небольшое количество никеля, кадмия, цинка и других примесей, которые не только улучшают качество серебряных изделий, но и могут ухудшить их.

Так, если в сплаве присутствует 1% никеля, то его прочность повышается, при содержании же 2,6% примесь делает сплав ломким. Если в сплавы серебра с медью добавлено более 9% олова, оно начинает плавиться, окисляется и увеличивает хрупкость лигатуры. По этой же причине содержание больше 6% алюминия в сплаве нежелательно. Кадмий с цинком снижают температуру плавления, стойки к потускнению на воздухе, пластичны, хорошо обрабатываются. Если в сплаве содержится от 15 до 21% цинка, его полезные свойства сводятся на нет. Медь в сочетании с кадмием образует достаточно хрупкое соединение. Содержание кремния и свинца не должно превышать в соединении серебра с медью более 1,5%, так как он становится ломким, а фосфор, сера и свинец совсем не должны присутствовать в драгоценном металле в качестве лигатур.

Из-за вышеописанных проблем ювелиры предпочитают добавлять к чистому серебру лучший для него металл — медь. Может быть введено от 5 до 50% этого золотисто-розового металла. При небольшом содержании меди в сплаве изделия смотрятся великолепно и по внешнему виду близки к чистому металлу.

Чем больше меди содержится в соединении, тем сильнее его цвет будет отличаться от серебра без примесей. Если готовые украшения имеют легкий красноватый отлив, это первая примета того, что в сплаве содержится 50% меди. Если покраснение изделия выражено заметно, это свидетельствует о наличии в нем более 50% меди. На рынках арабских стран очень часто встречаются драгоценности такого вида, а продавцы уверяют доверчивых туристов, что серебра в них не менее 60%. Хотя на восточных рынках изделия из серебра стоят дешевле, лучше покупать их в специализированных магазинах. Это послужит гарантом качества украшений и поможет избежать покупки фальшивок.

Как разобраться в пробах серебра?


Узнать, сколько процентов меди добавлено к драгоценному металлу, помогают пробы: их номер, состоящий из 3-х цифр, указывает, какое количество граммов чистого серебра содержится в 1 кг сплава.
В мировой ювелирной практике существуют специально принятые стандарты пробирования серебряных и золотых сплавов, которые должны соблюдать производители драгоценных украшений. В странах Азии выпускают ювелирные шедевры 600-й пробы, хотя они не являются качественными и быстро теряют внешний вид.

Согласно международным стандартам самой низкой пробой считается Ag 720. Хотя такой сплав и обладает легкой желтизной, его в России используют в ювелирных мастерских для изготовления замочков и застежек к цепочкам и колье.

Из сплавов 750-й и 800-й пробы производят столовые приборы и посуду. За изделиями из данных проб нужен постоянный уход, так как на воздухе они быстро окисляются.

Серебро 830-ой и 875-й проб годится в качестве материала для изготовления не только приборов и посуды. Оно нашло применение и в производстве декоративных украшений для интерьеров комнат.

Самым знаменитым сплавом серебра с медью считается стерлинг. Он содержит 92,5% драгоценного металла и лишь 7,5% меди. Именно 925-ая проба наиболее востребована в ювелирном деле. Из нее делают большую часть всех драгоценных украшений. Ослепительный стерлинг своим цветом похож на чистое серебро, но обладает большей твердостью, устойчивостью к почернению.

Для производства ювелирных изделий применяют и металл 960-й пробы. Однако такие украшения нужно носить очень аккуратно и бережно ухаживать за ними. Из-за пластичности металла изделия не отличаются долговечностью.

Всего 1% золотисто-розового металла содержит 999-ая проба серебра. Несмотря на недолгий срок эксплуатации, такие украшения охотно покупают жители Японии. Они считают, что чистое серебро тесно связано с Луной, являющейся местожительством милостивых к людям божеств, и через ношение этого драгоценного металла хотят быть ближе к ним.

С чем можно спутать лигатуры?

Часто сплавы серебра пытаются подделать, заменяя их похожими по виду материалами. Самыми распространенными из них являются медные сплавы мельхиор и нейзильбер. Мельхиор был очень известен в древности под названием «варшавское серебро». Из него изготавливали подвески, браслеты, обкладывали им ружья и кинжалы. Сверху материал покрывали тонким слоем серебра, поэтому он ничем не отличался от настоящего металла. Стоил он намного дешевле, и приобрести изделия из него могли не только богатые люди.

Нейзильбер имеет в своем составе медь, никель и цинк. По цвету и яркому блеску он настолько похож на драгоценный металл, что его даже называют «новым серебром». В наши дни нейзильбер используется в ювелирном деле для производства застежек и булавок к украшениям, но многочисленные мошенники могут изготавливать из него и мельхиора кольца и броши, чтобы продать доверчивым покупателям по цене драгметалла. Часто на таких изделиях отсутствуют пробы, что уже должно натолкнуть на мысли о сомнительном качестве украшений. Поэтому лучше не гнаться за довольно дешевым «серебром», а покупать его в ювелирных салонах.

Чем хорош сплав шибуичи?

Помимо общепризнанных пробированных лигатур существуют соединения серебра, содержащие высокий процент меди (от 30 до 75). Они не имеют огромной ценности на ювелирном рынке, но применяются в изготовлении интересных украшений. Одним из таких сплавов является шибуичи. Его по-другому называют еще «японская бронза», так как он был придуман японцами, которые повсеместно использовали лигатуру в производстве рукояток для кинжалов и ножей. Сейчас из шибуичи делают красивые броши, браслеты, кольца и серьги.

Слово шибуичи означает «три четверти», так как в нем содержится ¾ меди и лишь ¼ серебра. Натуральными цветами этого сплава являются бледно-розовый и желтовато-белый. Прелесть «японской бронзы» заключается в том, что при патинировании материал приобретает разнообразные оттенки от светло-серого до шоколадно-коричневого. Благодаря им изделия смотрятся необычно и фантастически красиво. Какой бы сплав серебра ни выбрали себе мужчины и женщины, они могут быть уверены в том, что изделия будут радовать их внешним видом и блеском долгое время.

Серебро известно человечеству с древних времен, но продолжает оставаться востребованным и в настоящее время. Его физические свойства резко отличаются от всех других благородных металлов.

Серебро очень пластично, хорошо поддается ковке и крайне тягуче. Степень мягкости ниже чем у золота, но выше меди. Металл обладает самой высокой электро- и теплопроводностью, отличной отражательной способностью, не вступает в реакцию с другими металлами и прекрасно полируется.

Ювелиры издавна используют серебро для изготовления украшений. Однако в чистом виде его не используют. Из-за своей мягкости изделие легко деформируется, царапается и теряет четкость рельефных узоров. Серебро боится сероводорода и озона и быстро темнеет, покрываясь черным трудноудалимым налетом. Для усиления прочностных характеристик серебро соединяют с некоторыми металлами: медью,алюминием, кадмием, никелем, цинком и родием. Такие добавки называют лигатурами.

Они придают серебру твердость и износоустойчивость. Из металла с полученными качествами ювелиры изготавливают высокохудожественные изделия самой сложной техники исполнения.

Чтобы оценить содержание серебра в сплаве пользуются знаком проба, который показывает какое количество граммов серебра содержится в одном килограмме сплава. Наиболее известны широкому потребителю 875, 925, 960 и 999 пробы.

При сплавлении с несколькими металлами используется более сложная технология. Так для получения сплава серебро-медь-цинк-кадмий каждый металл предварительно раскатывают в тончайшие пластины. Потом эти пластины заворачивают в серебряные листы, пакетируют, прессуют, отбивают и плавят.

Однако введение несоответствующего количества лигатуры в серебро, сплав может не улучшить свойства серебра, а резко ухудшить. Например, при введении в сплав 1% никеля, прочность его повышается, а уже при 2,6% сплав приобретает ломкость. Если в сплав серебра с медью добавить больше чем 9% олова, то такой сплав получится хрупким, начнет плавиться и окисляться.

Во избежание таких проблем ювелиры добавляют к серебру наиболее подходящий металл- медь. Обычная норма введения меди составляет от 5 до 50%. Изделия имеют прекрасный внешний вид и похожи на чистый металл.

Сплав шибуичи , полученный в Японии, состоит лишь на ¼ из серебра, а ¾ приходится на медь. Сплав с добавлением 5% золота тоже имеет такое же название. Сплав очень популярен в настоящее время. Изделия обычно патинируются для придания красивых оттенков. Широко применим в изготовлении браслетов, рукояток ножей, колец, сережек и брошей.


В России сплавы металлов регулируются ГОСТ. Согласно ему, серебро имеет краткое обозначение – Ср, золото- Зл, палладий – Пд, медь- М.

Сплав серебра и меди, формула его легко читается и понятна своей простотой.

Так сплав ЗлСрМ585-80 (именуемый красное золото) содержит в себе золота 585 частей, серебра – 80 частей, оставшиеся части составляет медь (1000-585-80=335). То есть слиток сплава такой марки весом 100 грамм содержит 58,5 г золота, 8г. серебра и 33,5 г. меди.

Наиболее известные и широкоприменяемые сплавы: Ag 960, Ag 925, Ag 875, Ag 830, Ag 800

  • Также стоит отметить так называемый сплав технического серебра

Металл марки серебра содержится от 49,5 до 50,5%. Железа не более 0,13%, свинца – 0,005%, сурьмы и висмута – по 0,002%. Остальное медь.

Вместе с тем, для защиты серебра от воздействия окружающей среды применяют и гальванические покрытия родированием, никелированием или нанесением слоя прозрачного лака. В случае длительного хранения изделие пассивируют воском.

В ювелирной промышленности используются сплавы системы серебро-медь. Диаграмма состояния данной системы приведена на рис. 94

Эта система затвердевает с образованием твердых растворов с ограниченной растворимостью. При затвердевании ее образуются следующие фазы, легко различаемые под микроскопом: обогащенный серебром α-твердый раствор с наибольшим содержанием меди 8,8%; обогащенный медью β-твердый раствор с наибольшим содержанием серебра 9%. Только в сплаве состава 71,5%Ag и 28,5%Сu образуются одновременно α и β фазы. Температура затвердевания этого сплава от начала процесса до конца остается постоянной и равной 779 о С. Кривая охлаждения его подобна кривой охлаждения чистого металла. Структура сплава данного состава является мелкозернистой и равномерной. Такую структуру принято называть эвтектической. Если содержание серебра в сплаве меньше 71,5%, то такой сплав принято называть заэвтектическим. К этой области сплавов принадлежит, например, сплав, содержание серебра в котором составляет 50%. Он начинает затвердевать при такой же температуре, как и сплав 875 пробы, но в отличие от последнего при затвердевании из расплава выделяются кристаллы β-фазы. С их ростом содержание меди в расплаве уменьшается, а содержание серебра увеличивается. Когда содержание серебра достигнет

71,5%, а температура упадет до 779°С, остаточная жидкая фаза кристаллизуется вокруг кристаллов β-фазы в виде эвтектики, т.е. происходит одновременное образование α- и β-фаз.

Если содержание серебра в сплаве выше 71,5%, то такие сплавы называют доэвтектическими как, например, сплав серебра 875 пробы. При затвердевании его при температуре 840°С из расплава выделяются обогащенные серебром кристаллы α-фазы. Содержание серебра в расплаве уменьшается и при температуре 779°С остаток расплава достигает эвтектического состава, который затвердевает в виде эвтектики, располагаясь по границам зерен.

Если содержание меди в сплаве соответствует составу α-фазы или еще меньше, то образуется гомогенный твердый раствор. Такие сплавы называются твердыми растворами. К ним относятся все сплавы с содержанием серебра выше 91,2%. В качестве примера может служить сплав серебра 925 пробы. Он начинает затвердевать при температуре 900°С и имеющаяся в сплаве медь полностью растворяется в серебре. Так как в сплаве находится 7,5% меди, то предел насыщения серебра медью, равный 8,8%, не достигается и при 810°С сплав застывает с образованием гомогенного твердого раствора.

Подобные твердые растворы образуются и со стороны меди, но в производстве ювелирных изделий эти сплавы не применяются.

С понижением температуры растворимость металлов в твердом состоянии уменьшается и избыточный металл начинает выделяться из сплава по кривой, идущей вниз от точки, соответствующей пределу насыщения. Практически почти во всех случаях используются сплавы, в которых содержание серебра выше 71,5%, т. е. доэвтектические сплавы.

Белый цвет серебра с увеличением содержания меди становится все более и более желтоватым. Если медь составляет 50% сплава, то сплав становится красноватым и сплав с 70% Сu имеет уже красный цвет.

Процессы выделения в твердом состоянии способствуют повышению твердости, особенно в сплавах, лежащих в пограничных областях твердых растворов и доэвтектических сплавов, как, например, у сплава 925 пробы. Если этот сплав после литья или отжига необходимо получить мягким, то его следует подвергать закалке; с другой стороны, нагревом до определенной температуры можно достигнуть существенного повышения его твердости.

Как видно из таблиц и диаграмм, у сплавов серебро-медь с повышением содержания мели твердость и прочность повышаются, а пластичность понижается. Это означает, что высокопробные сплавы серебра хорошо поддаются обработке давлением.

Стойкость сплавов системы серебро-медь к кислотам почти одинакова, так как оба исходных металла одинаково устойчивы против важнейших кислот. Сплавы серебра легко растворяются в азотной и концентрированной серной кислотах, в то время как к разбавленной серной кислоте, наиболее распространенном травителе, они не растворяются. Однако даже чистое серебро неустойчиво на воздухе. Из-за образования черного сульфида серебра сплав становится тусклым. С увеличением содержании меди в сплаве, стойкость его на воздухе уменьшается, ввиду того, что серные и аммиачные соединения приводят к потемнению меди.

Данных диаграмм и таблиц вполне достаточно для того, чтобы иметь полное представление о свойствах сплавов. Однако следует указать на некоторые свойства основных сплавов серебра, применяемых в ювелирном деле

Серебро 950 пробы. Цвет этого сплава соответствует цвету чистого серебра. При отжиге на воздухе на поверхности сплава образуется тонкая внешняя окисная пленка, под которой находится гетерогенный внутренний окислый слой. Благодаря высокой температуре плавления и цвету этот сплав следует использовать для эмалирования и чернения, так как краски эмали и черни на этой основе имеют интенсивный блеск. Этот сплав в очень хорошо поддается обработке давлением. Его следует применять при глубокой вытяжке, чеканке, а также для изготовления очень тонкой проволоки. При температуре 600 о С начинается старение сплава. После разливки или отжига следует сразу же приступать к обработке сплава, так как в противном случае может произойти естественное старение и пластичность сплава сильно понизится. К недостаткам сплава серебра 950 пробы следует отнести невысокие механические свойства. Изделия, изготовленные из этого сплава, при эксплуатации деформируются. Старением можно увеличить прочность сплава от 50 кгс/мм 2 до 100 кгс/мм 2 , но это приводит к усложнению и удорожанию технологического процесса обработки сплава.

Серебро 925 пробы. Этот сплав иначе еще называется «стерлинговое серебро» или «стандартное серебро». Из-за высокого содержания «серебра в сплаве и высоких механических свойств оно нашло широкое распространение во многих странах. Цвет сплава такой же, как у серебра 950 пробы, однако механические свойства выше. Сплав пригоден для эмалирования и чернения, но краски эмали и черни не должны иметь высокую температуру плавления. Для получения высокой пластичности после отжига этот сплав следует подвергать закалке. Благодаря старению при температуре 300°С прочность сплава повышается с 60 до 160 кгс/мм 2 .

Серебро 900 пробы. Этот сплав применяется, главным образом, для филигранных работ. Цвет его несколько отличается от цвета чистого серебра. Зачастую после окончания обработки изделие из этого сплава подвергают многократному травлению для того, чтобы удалить медь с поверхности изделия. Этот сплав менее стойкий на воздухе, чем сплавы 950 — 925 проб. Однако он имеет хорошие литейные свойства, хорошо обрабатывается давлением, но для глубокой чеканки он является слишком прочным. В качестве основы для нанесении эмали и черни сплав 900 пробы непригоден, поскольку у него при температуре 779°С начинается оплавление границ зерен.

Серебро 875 пробы. Это сплав применяется дли изготовления декоративных украшений. Цвет сплава и стойкость к потускнению почти такая же, как и у сплава серебра 900 пробы. Механические свойства его более высокие, а, следовательно, обрабатываемость давлением хуже, чем у сплавов серебра 900 пробы.

Серебро 800 пробы. Этот сплав применяется, в основном, для изготовления корпусов и столовых приборов. Его преимущество состоит, главным образом, в том, что он дешевле описанных выше сплавов. Главным недостатком является желтоватый цвет и малая химическая стойкость на воздухе. Для устранения этих недостатков многократным нагреванием и последующим травлением увеличивают содержание серебра в поверхностном слое. В связи с высоким содержанием меди в сплаве, в кислых продуктах происходит образование ядовитого ацетата меди. Примером может служить появление зеленого налета ацетата меди на столовых приборах при соприкосновении их с уксусом. Механические свойства сплава 800 пробы незначительно отличаются от свойств сплава 875 пробы, однако при обработке давлением его следует чаще подвергать промежуточному отжигу, чем вышеописанные сплавы. Литейные свойства его лучше, чем у сплавов с более высоким содержанием серебра. Точка ликвидуса находится при температуре 800°С. Это позволяет производить разливку при температуре 900°С, что соответствует температуре солидуса сплава 925 пробы.

Серебро 720 пробы. Этот эвтектический сплав из-за своих механических свойств и желтой окраски почти не находит применения. Правда, сплав серебра 750 пробы нашел довольно широкое применение в качестве припоя в 19 столетии. Твердость и прочность эвтектических сплавов — наибольшая, а пластичность — наименьшая из всех сплавов системы Ag-Cu. Кроме того, этот сплав обладает хорошей упругостью и в некоторых случаях из него изготавливают пружины, иглы и подобные им изделия. Иногда сплав 720 пробы применяют в качестве припоя. Свойства сплавов серебра даны в табл. 30.

Таблица 30. Свойства сплавов серебра

Влияние примесей на свойства сплавов системы серебро — медь. Если сплав системы серебро-медь содержит какой-либо другой сопутствующий элемент, то он превращается в сплав трех или более компонентов и его свойства изменяются более или менее сильно. В этом случае необходимо делать различие между вредными примесями и легирующими элементами.

В сплавах серебра, применяемых в производстве ювелирных изделий, содержание никеля до 1% препятствует росту зерна и тем самым улучшает механические свойства сплавов. С увеличением содержания никеля до 2,5% ухудшается обрабатываемость сплава. При еще большем содержании никеля он не растворяется в сплаве и становится вредной примесью.

Железо всегда является вредной примесью в сплавах серебра. Оно не растворяется в серебро и присутствует в его сплавах в виде чужеродных частиц, ухудшающих обрабатываемость сплава.

Сплавы серебра, содержащие свинец, всегда становятся хрупкими при нагреве, т.е. красноломкими. Свинец и серебро образуют эвтектику, которая плавится при температуре 304°С. В связи с этим ни в коем случае нельзя допускать присутствие свинца в сплаве.

Незначительное количество олова, присутствующее в сплаве, снижает температуру плавления сплава. Чистое серебро может растворить в себе до 19% однако сплав получается более тусклый, мягкий и пластичный, чем сплав Ag—Сu. Если в сплаве Ag—Cu содержание олова превысит 9%, то образуется хрупкое соединение Cu 4 Sn. Так как олово при плавлении окисляется, то хрупкость сплава возрастает из-за образования SnO 2 .

До 5% алюминия растворяются в твердом сплаве и почти не влияют на структуру и свойства сплава. Однако при более высоком содержании алюминия в сплаве образуется хрупкое соединение Ag 3 Al. При отжиге и плавке образуется также соединение Al 2 O 3 , которое, располагаясь по границам зерен, делает сплав хрупким и ломким.

Несмотря на то, что кремний в серебре не растворяется, он образует с серебром твердые и хрупкие кремнисто-серебряные соединения, которые, располагаясь по границам зерен, сильно затрудняют обработку сплава. Кремний может попасть в сплав, будучи восстановлен из материала тигля.

Сера образует с серебром и медью твердые соединения Ag 2 S и Cu 2 S. Которые могут располагаться как по границам, так и внутри зерен. Источниками попадания серы в сплавы могут быть содержащий серу исходный материал, горючие материалы, горючий газ, травители.

Незначительных следов фосфора уже достаточно для того, чтобы образовались хрупкие интерметаллические соединения Ag 2 P или Cu 3 P, которые в виде эвтектики располагаются по границам зерен. Сплавы от этого становятся хрупкими, быстро тускнеют, на них плохо ложатся гальванические покрытия. Фосфор может попасть в сплав при раскислении расплава фосфористой медью.

Серебро при температуре, несколько большей точки плавления, может растворить в себе кислорода в 20 раз больше своего объема, т.е. 1 часть расплавленного серебра может поглотить 20 частей кислорода. При температуре несколько ниже точки затвердевания растворимость кислорода в серебре составляет половину объема серебра, и кислород выделяется из металла. Кислород, не успевший выделиться из металла при его затвердевании, образует в краевой зоне слитка раковины, которые уменьшают прочность сплава и ухудшают обработку металла давлением. При вальцовке и вытяжке металл дает трещины. При нагреве такого металла газ расширяется, и на поверхности металла образуются вспучивания, так называемое «дутое серебро». Если серебро находится в сплаве с медью, то образуется закись меди Сu 2 О. В зависимости от месторасположения частичек закиси меди, они могут оказывать различное действие на свойства сплавов серебра. Если они располагаются тонким слоем по границам зерен, то влияние их на обрабатываемость сплава давлением незначительное. Если частицы закиси меди прижаты к твердым инородным телам, то при полировке они не вырываются и выступают над поверхностью. При прокатке металла они выкрашиваются и оставляют на поверхности следы в виде штрихов, образуя так называемое «штриховое серебро».

Двуокись серы содержится в горючих газах и оказывает вредное действие на сплавы серебра тем, что подобно кислороду поглощается расплавленным металлом. И при затвердевании его улетучивается и, как кислород, образует в металле раковины. Кроме того, образуются химические соединения в виде Сu 2 S и Ag 2 S, которые, располагаясь по границам зерен, ослабляют сцепление их в слитке.

Процесс литья по выплавляемым моделям сплавов на основе серебра и производство слитков изучены в настоящее время слабо . Показано, что при многократных переплавах сплава СрМ875 в слитках появляется газовая пористость, увеличивается содержание неметаллических включений и ухудшается пластичность металла. Плавка сплава СрМ 875 в вакууме 0,3 — 0,8мм.рт.ст. позволила уменьшить содержание примесей в металле и повысить его плотность. Использование вакуумированного металла при литье по выплавляемым моделям ювелирных изделий позволило ликвидировать такой дефект, как газовую пористость, а также улучшить чистоту поверхности отливок.

Л.А. Гутов Литье по выплавляемым моделям сплавов золота и серебра

Получение поверхностей с заданными свойствами может быть осуществлено при электрохимическом выделении сплавов из двух и более металлов в условиях совместного разряда ионов . Электролитическое осаждение сплавов с каждым годом приобретает все большее значение для различных областей техники . Покрытия сплавами часто оказываются значительно более эффективными, чем изготовление деталей из металлургических сплавов. Электролитические сплавы обладают несколько иными свойствами, чем литые. Их повы-шенная твердость, в частности, может иметь большое значение для изделий, работающих в условиях механического износа .

Коррозионная стойкость электролитических сплавов нередко оказывается более высокой, чем у чистых металлов из-за особого строения осадков сплавов.

Серебрение - один из распространенных видов покрытий. Из драгоценных металлов оно получило наиболее широкое применение в гальванотехнике. Причины столь широкого использования этого металла - в его свойствах: серебро легко полируется, обладает высокой термо- и электропроводностью, характеризуется большой химической стойкостью, высокой (до 95%) отражательной способностью.

Но серебро обладает и рядом существенных недостатков: малой твердостью (60-85 кг/мм 2) и износостойкостью, а также склонностью к потускнению в течение времени, особенно в атмосфере промышленных газов. Химическая активность серебрянных покрытий особенно высока при наличии матовой неполированной поверхности .

Гальваническое осаждение сплавов серебра открывает перспективу получения покрытий с нужными для ювелирной промышленности качествами (высокой износостойкостью и твердостью), а также блестящих сплавов, обладающих повышенной, по сравнению с обычным матовым серебром, устойчивостью к атмосферным воздействиям.

Перспективными контактными материалами, а также материалами, которые могут найти широкое применение в ювелирной промышленности, являются сплавы серебра с сурьмой , никелем , палладием , кобальтом , висмутом , медью .

Сплавы серебра со свинцом , индием и таллием применяются как антифрикционное покрытия.

Совместное осаждение металлов дает возможность выделить в сплав такие металлы, получить которые в чистом виде из растворов не удается. Разработаны электролиты для осаждения сплавов на основе тугоплавких металлов, в частности, сплавов серебра с вольфрамом и молибденом .

Известно, что для совместного разряда двух видов ионов необходимо определенное соотношение активностей ионов в электролите, активностей металлов в сплаве и перенапряжений в условиях их совместного выделения.

Стандартные потенциалы металлов, совместное осаждение которых на катоде представляет практический интерес, могут отличаться более чем, на 2 в.

Наиболее эффективным способом изменения активности ионов является связывание их в комплексы. При этом про-исходит как изменение активности ионов в растворе, так и изменение кинетических условий их разряда, т. е. изменяется равновесная часть потенциала и величина поляризации .

По мнению некоторых исследователей , осаждение металлов из комплексных электролитов происходит путем разряда на катоде свободных ионов металла, образующихся при диссоциации комплексных ионов. Вследствие очень малой концентрации таких ионов возникает значительная концентрационная поляризация.

Другие исследователи полагают, что в процессе разряда непосредственное участие принимают сами комплексные ионы, адсорбирующиеся на поверхности катода. Восстановление этих ионов протекает при более высокой энергии активации, что вызывает большую химическую поляризацию.

Протекание процесса по первому механизму возможно в случае, когда комплексные ионы недостаточно прочны .

Кроме того, разряд простых ионов может происходить также в начале процесса, при малых плотностях тока. С увеличением скорости процесса при достижении потенциала разряда комплексных ионов процесс идет с химической поляризацией.

Е. И. Ахумов и Б. Л. Розен вывели уравнение, показывающее, что при постоянной плотности тока между логарифмом отношения содержания металлов в сплаве и логарифмом отношения концентраций их ионов в электролите должна существовать линейная зависимость:

Следовательно, необходимым условием при осаждении сплавов является постоянство состава электролита, а также рН электролита, изменение которых влияет на состав катодного осадка (сплава).

Так как фазовая структура сплавов в значительной степени определяет их физико-химические свойства, то особый интерес представляет изучение причин, вызывающих образование тех или иных фаз при электрокристаллизации сплавов .

Анализируя имеющуюся литературу, можно сделать вывод, что вопрос этот рассмотрен еще недостаточно полно, часто интервал составов полученных сплавов очень узок, что не позволяет выявить существование отчетливых зависимостей .

Наиболее интересными по своим физико-механическим свойствам являются сплавы, образующие в условиях электроосаждения пересыщенные твердые растворы.

Образование твердых растворов происходит на основе более благородного компонента (в частности, серебра) в качестве растворителя, пересыщение обычно не превышают 10-12% .

В соответствии с закономерностью Н. С. Курнакова у сплавов, образующих твердые растворы, наблюдается резкое увеличение твердости.

Для покрытия серебром и его сплавами применяют только растворы комплексных солей за исключением электролита для получения сплава серебро-селен .

В настоящее время получены двадцать три электролитических сплава серебра (табл. 1) и только десять из них - из нецианистых электролитов |30].

Таблица 1

В промышленности для серебрения применяются почти исключительно цианистые электролиты , известные в течение 140 лет и за это время не подвергшиеся каким-либо принципиальным изменениям.

Цианистые электролиты серебрения характеризуются высокой рассеивающей способностью, ~ 100%-ным выходом по току; осадки, полученные из них, имеют мелкокристаллическую структуру.

К главным недостаткам цианистых электролитов относятся: сложность их приготовления, недостаточная устойчивость, низкая производительность, а также высокая токсичность ,

В связи с перечисленными выше недостатками одной из важнейших задач современной гальваностегии является замена цианистых электролитов неядовитыми, а также интенсификация процессов серебрения. Кроме того, до сих пор практически еще не решена задача получения блестящих, не тускнеющих со временем покрытий.

Рассмотрим подробнее некоторые электролиты (см. табл. 2) для получения сплавов серебра.

Сплавы, полученные из пирофосфатного электролита, обладают высокой микротвердостью (230 кг/мм2), их износостойкость в 15 раз выше, чем у чистого серебра. Покрытие имеет достаточную прочность сцепления со сталью даже без применения подслоя. Сравнительные данные сплавов, полученных из пирофосфатных и цианистых электролитов, говорят о том, что свойства сплава, полученного из цианистого электролита, несколько хуже.

Таблица 2

№ п/п Состав электролита, г/л Режим электролиза, Д к, а/дм 2 , o C и т.д. Состав сплава (вес.% легирующего компонента) Твердость, кг/мм 2 Литературная ссылка
Компоненты Содерж. г/л
1 Ag (мет.)
Cu (мет.)
K 4 P 2 O 7 (своб.)
pH
6 - 7
14 - 15
100
11 - 13
Д к =0,5 - 0,7
t = 20 o C
η r = 95%
до 15% 230
2 Ag (мет.)
Cu (мет.)
Трилон Б
NH 4 OH дл pH
1 - 6
10 - 12
120 - 140
8 - 9
Д к =0,5 - 1,5
t комн.
η r = 50%
- 230
3 Ag (мет.)
Cu (мет.)
Трилон Б
KOH дл pH
1,7 - 5,4
17 - 20,8
100 - 120
8,5 - 9,5
Д к =0,5
Д к =3,0
t комн.
η r = 45 - 50%
15%
82%
60 - 70%
Max -
230

4 AgSCN
NiSO 4 .7H 2 O
Na 2 SO 4 .10H 2 O
1 - 50
8 - 12
100
Д к =1,2 ма/см 2
t=60 - 70 o C
4 - 20% -
5 Σ(Ag + Ni)
K 4 P 2 O 7
6
150
Д к =0,4 - 0,5
t =18 - 25
η r = 60-70% Перемешив.
Сплавы получены в широком диапазоне 180 (20% ат. Ni)
480 (80-86% ат. Ni)
6 Pd (мет.)
Ag (мет.)
Трилон Б
(NH 4) 2 CO 3
NH 3 (своб)
pH
0,15-0,20 моль/л
0,02 - 0,03
0,12 - 0,20
0,1 - 0,20
0,25 - 0,50
9,0 - 9,5
Д к =0,07 - 0,15
Д к =0,3 - 0,5
t= 20 - 40
η r = 90-95%
15-25%
40 - 50%
220 - 280
7 Ag (мет.)
Pd (мет.)
K 4 P 2 O 7
KCNS
0 - 14
10 - 17
20 - 70
130 - 180
Д к =0,4 - 0,5
t = 18-20
2 - 8% -
8 AgSCN
K 2 Pd(CNS) 4
KCNS
0,1 M
0,1 M
2M
- - -
9 Ag (мет.)
Pt (мет.)
LiCl
HCl (кислота)
3,4
5,1
500
10
Д к =0,2 - 0,25
t = 70 o C
η r = 20-80%
0 - 60 150-350%
10 AgNO 3
K 2 WO 4
(NH 4) 2 SO 4
(CHOH . CO 2 H)
pH
35
30
150
12
8 - 10
Д к = 0,8
η r = 106%
до 2% вес. H v в 1,5-2 раза больше чистого электролита серебрения
11 Ag (мет.)
KCN (своб.)
K 2 CO 3
Sb 2 O 3 (порошок)
KNaC 4 H 4 O 6 . 4H 2 O
40 - 50
50 - 60
до 70
20 - 100
20 - 40
Д к = 0.7 -0,8
t = 20 ± 4
0,5 - 0,6% 130 - 140 кгс/мм 2
12 Ag (мет.)
Sb (мет.)
К 4 / = 2,5 - 0,5
1 н.
1 ммоль/л
5 ммоль/л
8 мл/л
Д к = Д a = 2 - 6 ма/см 2
t = 20
0,13 - 4,5 ат.% -
14 Ag (мет.)
Bi (мет.)
K 4 P 2 O 7 (своб.)
KCNS (своб.)
К 4 ).

Повышение плотности тока на 1 а/дм 2 увеличивает процент содержания сурьмы в осадке на 0,5%. Применение плотности тока больше 1 а/дм 2 возможно при перемешивании и температуре электролита 50-60 o С, что при наличии в электролите сравнительно большой концентрации свободного цианистого калия крайне нежелательно.

Н. П. Федотьевым, П. М. Вячеславовым и Г. К. Буркат предложен нецианистый электролит для осаждения сплава серебро-сурьма с содержанием сурьмы 2-2,5%. За основу данного электролита взят синеродистороданистый электролит серебрения. Сплав представляет собой ряд твердых растворов, отмечается наличие в нем интерметаллических соединений состава АgSb и Аg 3 Sb. При содержании в осадке 8-10% сурьмы были получены зеркально-блёстящие осадки. В качестве депассиватора анодов применяется роданид калня. Анодная плотность тока не должна быть меньше катодной, так как в противном случае будет происходить химическое растворение анодов. Свойства сплава мало чем отличаются от свойств сплава, полученного из цианистого электролита, Данный электролит значительно менее токсичен, чем описаный выше.

Из растворов, содержащих 20 - 30 ммоль/л Н 2 SеО 3 , 2,5--10 ммоль/л АgNО 3 , подкисленных в зависимости от концентрации АgNО 3 15 - 60 мл/л азотной кислоты получены компактные осадки сплава серебро - селен. Состав и качество осадков зависят от соотношения Н 2 SеО 3 и АgNО 3 в католнте, их суммарной концентрации, температуры и плотности тока.

На серебряном катоде были получены компактные блестящие осадки, толщиной до 1 мкм состава от 0,13 до 4,5 ат.% селена; на платиновом катоде были получены только матовые осадки состава от 2,4 до 4,4 ат.% селена. Тонкие слои сплава селена с серебром обладают полупроводниковыми свойствами.

Опыты проводились в сосуде из оргстекла с диафрагмой из поливинилхлоридной ткани, с платиновыми анодами; катодами служила платиновая пластинка или медная (иногда платиновая), электролитически покрытая серебром.

Результаты работы очень интересны, так как это первый некомплектный электролит для получения сплавов серебра, но получение сплава серебра с селеном пока еще находится в стадии лабораторных разработок.

Для осаждения сплава серебро - висмут с 1,5 - 2,5 вес,% висмута предложен пирофосфатносинеродистый электролит. Сплав обладает высокой микротвердостью (190 кг/ мм 2), износостойкость его в 3 - 4 раза выше, чем чистого серебра.

При совместном осаждении серебра и висмута имеет место деполяризация разряда обоих компонентов сплава, увеличение предельных токов разряда серебра и висмута в сплав. Висмут осаждается в сплав с образованием твердого раствора висмута в серебре до 1,3 - 1,5 ат.% (по сравнению с 0,33 ат % висмута при температуре выше 200 o С по диаграмме состояния)

Электролит для получения сплава приготавливался на основе железистосииеродистого электролита путем добавления к нему пирофосфатного комплекса висмута (КВiP 2 О 7).

Электролит чувствителен к иону NO - 3 , поэтому железистосинеродистый электролит серебрения приготавливали из хлористого серебра, что, несомненно, является достаточно сложным. Осадки удовлетворительного качества получались в очень небольшом интервале рН электролита от 8,3 до 8,7.

В литературе имеются упоминания о возможности осаждения сплава серебро-висмут из комплексного аммиакатносульфосалицилатного электролита, но конкретных данных по составу электролита и составу осадков авторы не приводят.

Из всех вышеприведенных электролитов широкое промышленное применение нашел пока только пирофосфатно-роданистый электролит для получения сплава серебро-паладнй (табл. 2). В литературе недостаточно освещены еще вопросы получения зеркально-блестящих сплавов серебра, и особенно, из нецианистых электролитов, хотя именно такие покрытия вызывают повышенный интерес из-за их отличного декоративного вида и повышенной коррозионной стойкости. Сочетание обоих этих качеств является особенно ценным для ювелирной промышленности.

Задача состоит в разработке достаточно скоростных нетоксичных электолитов для осаждения блестящих сплавов серебра.

ЛИТЕРАТУРА

1. Скирстымояская Б. И. Успехи химии. 33,4 , 477(1964).

2. Федотьев Н. П., Бибиков Н. Н. Вячеславов П. М., Грилихеc С. Я. Электролитические сплавы. Машгиз, 1962.

3.Зытнер Л. А. Диссертация (к. т. н.). ЛТИ им. Ленсовета, 1967.

4. Ямпольский А. М. Электролитическое осаждение благородных и редких металлов. «Машиностроение», 1971.

6. Мельников П. С., Саифуллин Р. С., Воздвиженский Г. С. Защита металлов, т. 7, 1971.

7. Патент ФРГ, с 23 в.

8.Буркат Г. К., Федотьев Н. П., Вячеславов П. М. ЖПХ, ХLI, вып. 2, 427, 1968.

9. Кудрявцев Н. Т., Кушевич И. Ф., Жандарова И. А. Защита металлов, 7, 2, 206, 1971

10. Агарониянц А. Р., Крамер Б. Ш. др. Электролитические покрытия в приборостроении. Л., 1971.

11. Буркат Г. К., Федотьев Н. П. и др. ЖПХ, ХLI, 2, 291 - 296, 1968.

13. Вячеславов П. М., Грилихес С. Я. и др. Гальванотехника благородных и редких металлов. «Машиностроение», 1970.

14. Brenner A. Electrodeposition of Alloys, N.-J.-L., (1963)

15. Избекова О. В., Кудра О. К., Гаевская Л. В. Авт. свидетельство, СССР, кл. 236 5/32, № 293060, заявл. 10/Х 1969.

16. Струиина Т. П., Иваиов А. Ф. и др. Электролитические покрытия в приборостроении. 83, Л., 1971.

17. Кудрявцева И. Д., Попов С. Я., Скалозубов М. Ф. Исследования в области гальванотехники (по материалам межвузовского научного совещания по электрохимии), 73, Новочеркасск, 1965

18. Фрумкин А. Н., БагоцкиЙ В. С., Иофа 3. А., Кабанов В. Н. Кинетика электродных процессов. Изд. МГУ, 1952.

19. Ваграмян А. Т. Электроосаждснне металлов. Изд. АН СССР, 1950.

20. Кравцов В.И. Электродные процессы в растворах комплексов металлов, ЛГУ, 1959.

21. Le Blanc M., Jchick J. Z. phus. chem., 46, 213, 1903.

22. Левин. А. И. Тезисы докладов научно-технической конференции по теории и практике использования в гальванотехнике неядовитых электролитов. Изд. Казанского ун-та, 1963.

23. Андрющенко Ф. К., Орехова В. В., Павловская К. К. Пирофоефатные электролиты. Киев «Техника», 1965.

24. Ахумов Е. И.. Розен Б. Л. Доклады АН СССР, 109, № 6, 1149, 1956.

25. Буркат Г. К.. Диссертация(к. т. п.). ЛТП им. Ленсовета, 1966.

26. Пацаускас Э. И., Яиицкии И. В., Ласавичене И. А. Тр. АН Лит. ССР, Б., № 2(65), 61 - 7!, 1971.

27. Канкарис В. А., Пиворюнаите И. Ю. Химия и химическая технология. Научные труды вузов Лит. ССР, № 3, 1963.

29. Дубяго Е. И., Тертышная Р. Г., Осаковский А. И. Химическая технология. Республиканский межвед, тематмч. паучно-техн. сб., вып. 18, 8, 1971

30. Krohn and Bohn C, W. Plating, 58, № 3, 237-241, 1971.

32. Фантгоф Ж. Н., Федотьев Н. П., Вячеславов П. М. Покрытия драгоценными и редкими металлами. Материалы семинара, 105, М., 1968

33. Кудра О. К., Избекова О. В., Гаевская Л. В. Вестник Киевского политехнического ин-та, № 8, 1971.

34. Рожков Г. А., Гудпн Н. В. Труды Казанскою химпко-технологич. ин-та, в. 36, 178, 1967.

35. Грилнхес С. Я., Исакова Д. С. Всесоюзная научная конференция. Пути развития и последние достижения в области прикладной электрохимии (10-12 ноября 1971 г.), Л., 1971.




Советы начинающим хозяйкам
2024 © loveserial.ru